Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Jun 1;236(2):397–400. doi: 10.1042/bj2360397

Site-specific modification of albumin by free radicals. Reaction with copper(II) and ascorbate.

G Marx, M Chevion
PMCID: PMC1146853  PMID: 3753454

Abstract

Exposure of albumin to Cu(II) (10-100 microM) and ascorbate (0.1-2 mM) results in extensive molecular modifications, indicated by decreased fluorescence and chain breaks. The rate of utilization of molecular oxygen and ascorbate as a function of Cu(II) concentration is non-linear at copper/albumin ratios of greater than 1. It appears that Cu(II) bound to the tightest albumin-binding site is less available to the ascorbate than the more loosely bound cation. SDS/polyacrylamide-gel electrophoresis reveals new protein bands corresponding to 50, 47, 22, 18 and 3 kDa. For such a cleavage pattern, relatively few (approximately 3) and rather specific chain breaks occurred. Repeated addition of portions of ascorbate to the albumin/Cu(II) mixture results in increased intensity of the new bands. The absence of Cu(II) or the presence of metal chelating agents is inhibitory. There was no evidence of intermolecular cross-linking or of the formation of insoluble, albumin-derived, material. A mechanism is proposed wherein the loosely bound Cu(II) participates in a Fenton-type reaction. This generates OH. radicals, which rapidly inter-react with the protein and modify it in a 'site-specific' manner.

Full text

PDF
397

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bensch K. G., Fleming J. E., Lohmann W. The role of ascorbic acid in senile cataract. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7193–7196. doi: 10.1073/pnas.82.21.7193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borg D. C., Schaich K. M., Elmore J. J., Jr, Bell J. A. Cytotoxic reactions of free radical species of oxygen. Photochem Photobiol. 1978 Oct-Nov;28(4-5):887–907. doi: 10.1111/j.1751-1097.1978.tb07037.x. [DOI] [PubMed] [Google Scholar]
  3. Bradshaw R. A., Peters T., Jr The amino acid sequence of peptide (1-24) of rat and human serum albumins. J Biol Chem. 1969 Oct 25;244(20):5582–5589. [PubMed] [Google Scholar]
  4. Bradshaw R. A., Shearer W. T., Gurd F. R. Sites of binding of copper (II) ion by peptide (1-24) of bovine serum albumin. J Biol Chem. 1968 Jul 25;243(14):3817–3825. [PubMed] [Google Scholar]
  5. Fucci L., Oliver C. N., Coon M. J., Stadtman E. R. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1521–1525. doi: 10.1073/pnas.80.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gutteridge J. M., Wilkins S. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochim Biophys Acta. 1983 Aug 23;759(1-2):38–41. doi: 10.1016/0304-4165(83)90186-1. [DOI] [PubMed] [Google Scholar]
  7. Henkin R. I. Metal-albumin-amino acid interactions: chemical and physiological interrelationships. Adv Exp Med Biol. 1974;48(0):299–328. doi: 10.1007/978-1-4684-0943-7_15. [DOI] [PubMed] [Google Scholar]
  8. Lau S. J., Sarkar B. Ternary coordination complex between human serum albumin, copper (II), and L-histidine. J Biol Chem. 1971 Oct 10;246(19):5938–5943. [PubMed] [Google Scholar]
  9. Laussac J. P., Sarkar B. 13Carbon-nuclear magnetic resonance investigation of the Cu(II)-binding to the native sequence peptide representing the Cu(II)-transport site of human albumin. Evidence for the involvement of the beta-carboxyl side chain of aspartyl residue. J Biol Chem. 1980 Aug 25;255(16):7563–7568. [PubMed] [Google Scholar]
  10. Levine R. L. Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system. J Biol Chem. 1983 Oct 10;258(19):11828–11833. [PubMed] [Google Scholar]
  11. Marx G., Chevion M. Fibrinogen coagulation without thrombin: reaction with vitamin C and copper(II). Thromb Res. 1985 Oct 1;40(1):11–18. doi: 10.1016/0049-3848(85)90345-7. [DOI] [PubMed] [Google Scholar]
  12. Oelrichs B. A., Kratzing C. C., Kelly J. D., Winzor D. J. The binding of ascorbate to bovine serum albumin. Int J Vitam Nutr Res. 1984;54(1):61–64. [PubMed] [Google Scholar]
  13. Robinson A. B., Irving K., McCrea M. Acceleration of the rate of deamidation of GlyArgAsnArgGly and of human transferrin by addition of L-ascorbic acid. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2122–2123. doi: 10.1073/pnas.70.7.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rowley D. A., Halliwell B. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: a physiologically significant reaction? Arch Biochem Biophys. 1983 Aug;225(1):279–284. doi: 10.1016/0003-9861(83)90031-0. [DOI] [PubMed] [Google Scholar]
  15. Schuessler H., Schilling K. Oxygen effect in the radiolysis of proteins. Part 2. Bovine serum albumin. Int J Radiat Biol Relat Stud Phys Chem Med. 1984 Mar;45(3):267–281. doi: 10.1080/09553008414550381. [DOI] [PubMed] [Google Scholar]
  16. Shasby D. M., Lind S. E., Shasby S. S., Goldsmith J. C., Hunninghake G. W. Reversible oxidant-induced increases in albumin transfer across cultured endothelium: alterations in cell shape and calcium homeostasis. Blood. 1985 Mar;65(3):605–614. [PubMed] [Google Scholar]
  17. Shinar E., Navok T., Chevion M. The analogous mechanisms of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper. J Biol Chem. 1983 Dec 25;258(24):14778–14783. [PubMed] [Google Scholar]
  18. Yamagishi A. Evidence for the binding states of copper(II)-serum albumin complexes as revealed by transient electric dichroism measurements. Biopolymers. 1981 Jan;20(1):201–207. doi: 10.1002/bip.1981.360200114. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES