Abstract
Exposure of albumin to Cu(II) (10-100 microM) and ascorbate (0.1-2 mM) results in extensive molecular modifications, indicated by decreased fluorescence and chain breaks. The rate of utilization of molecular oxygen and ascorbate as a function of Cu(II) concentration is non-linear at copper/albumin ratios of greater than 1. It appears that Cu(II) bound to the tightest albumin-binding site is less available to the ascorbate than the more loosely bound cation. SDS/polyacrylamide-gel electrophoresis reveals new protein bands corresponding to 50, 47, 22, 18 and 3 kDa. For such a cleavage pattern, relatively few (approximately 3) and rather specific chain breaks occurred. Repeated addition of portions of ascorbate to the albumin/Cu(II) mixture results in increased intensity of the new bands. The absence of Cu(II) or the presence of metal chelating agents is inhibitory. There was no evidence of intermolecular cross-linking or of the formation of insoluble, albumin-derived, material. A mechanism is proposed wherein the loosely bound Cu(II) participates in a Fenton-type reaction. This generates OH. radicals, which rapidly inter-react with the protein and modify it in a 'site-specific' manner.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bensch K. G., Fleming J. E., Lohmann W. The role of ascorbic acid in senile cataract. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7193–7196. doi: 10.1073/pnas.82.21.7193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Borg D. C., Schaich K. M., Elmore J. J., Jr, Bell J. A. Cytotoxic reactions of free radical species of oxygen. Photochem Photobiol. 1978 Oct-Nov;28(4-5):887–907. doi: 10.1111/j.1751-1097.1978.tb07037.x. [DOI] [PubMed] [Google Scholar]
- Bradshaw R. A., Peters T., Jr The amino acid sequence of peptide (1-24) of rat and human serum albumins. J Biol Chem. 1969 Oct 25;244(20):5582–5589. [PubMed] [Google Scholar]
- Bradshaw R. A., Shearer W. T., Gurd F. R. Sites of binding of copper (II) ion by peptide (1-24) of bovine serum albumin. J Biol Chem. 1968 Jul 25;243(14):3817–3825. [PubMed] [Google Scholar]
- Fucci L., Oliver C. N., Coon M. J., Stadtman E. R. Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1521–1525. doi: 10.1073/pnas.80.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutteridge J. M., Wilkins S. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochim Biophys Acta. 1983 Aug 23;759(1-2):38–41. doi: 10.1016/0304-4165(83)90186-1. [DOI] [PubMed] [Google Scholar]
- Henkin R. I. Metal-albumin-amino acid interactions: chemical and physiological interrelationships. Adv Exp Med Biol. 1974;48(0):299–328. doi: 10.1007/978-1-4684-0943-7_15. [DOI] [PubMed] [Google Scholar]
- Lau S. J., Sarkar B. Ternary coordination complex between human serum albumin, copper (II), and L-histidine. J Biol Chem. 1971 Oct 10;246(19):5938–5943. [PubMed] [Google Scholar]
- Laussac J. P., Sarkar B. 13Carbon-nuclear magnetic resonance investigation of the Cu(II)-binding to the native sequence peptide representing the Cu(II)-transport site of human albumin. Evidence for the involvement of the beta-carboxyl side chain of aspartyl residue. J Biol Chem. 1980 Aug 25;255(16):7563–7568. [PubMed] [Google Scholar]
- Levine R. L. Oxidative modification of glutamine synthetase. II. Characterization of the ascorbate model system. J Biol Chem. 1983 Oct 10;258(19):11828–11833. [PubMed] [Google Scholar]
- Marx G., Chevion M. Fibrinogen coagulation without thrombin: reaction with vitamin C and copper(II). Thromb Res. 1985 Oct 1;40(1):11–18. doi: 10.1016/0049-3848(85)90345-7. [DOI] [PubMed] [Google Scholar]
- Oelrichs B. A., Kratzing C. C., Kelly J. D., Winzor D. J. The binding of ascorbate to bovine serum albumin. Int J Vitam Nutr Res. 1984;54(1):61–64. [PubMed] [Google Scholar]
- Robinson A. B., Irving K., McCrea M. Acceleration of the rate of deamidation of GlyArgAsnArgGly and of human transferrin by addition of L-ascorbic acid. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2122–2123. doi: 10.1073/pnas.70.7.2122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowley D. A., Halliwell B. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: a physiologically significant reaction? Arch Biochem Biophys. 1983 Aug;225(1):279–284. doi: 10.1016/0003-9861(83)90031-0. [DOI] [PubMed] [Google Scholar]
- Schuessler H., Schilling K. Oxygen effect in the radiolysis of proteins. Part 2. Bovine serum albumin. Int J Radiat Biol Relat Stud Phys Chem Med. 1984 Mar;45(3):267–281. doi: 10.1080/09553008414550381. [DOI] [PubMed] [Google Scholar]
- Shasby D. M., Lind S. E., Shasby S. S., Goldsmith J. C., Hunninghake G. W. Reversible oxidant-induced increases in albumin transfer across cultured endothelium: alterations in cell shape and calcium homeostasis. Blood. 1985 Mar;65(3):605–614. [PubMed] [Google Scholar]
- Shinar E., Navok T., Chevion M. The analogous mechanisms of enzymatic inactivation induced by ascorbate and superoxide in the presence of copper. J Biol Chem. 1983 Dec 25;258(24):14778–14783. [PubMed] [Google Scholar]
- Yamagishi A. Evidence for the binding states of copper(II)-serum albumin complexes as revealed by transient electric dichroism measurements. Biopolymers. 1981 Jan;20(1):201–207. doi: 10.1002/bip.1981.360200114. [DOI] [PubMed] [Google Scholar]

