Abstract
The deacylation-reacylation process has been shown to be an important pathway for phospholipids to attain the desired acyl groups at the C-2 position. The acylation of 1-acyl-glycerophosphocholine (-GPC) in mammalian hearts has been well documented, but the acylation of 1-alkenyl-GPC has not been described. In this paper, we demonstrate the presence of acyl-CoA: 1-alkenyl-GPC acyltransferase for the acylation of 1-alkenyl-GPC in mammalian hearts; the highest activity is found in guinea pig heart. The guinea pig heart 1-alkenyl-GPC acyltransferase has only 10-40% of the 1-acyl-GPC acyltransferase activity, and both activities are located in the microsomal fraction. However, these two enzymes respond differently to cations, detergents and heat treatment, and the two enzymes also display different acyl specificity. Kinetic studies indicate that both reactions could not be accommodated by the same catalytic site. The results provide strong evidence that the two activities are from separate and distinct proteins. The specificity of 1-alkenyl-GPC acyltransferase for unsaturated species of acyl-CoA may play an important role in the maintenance of the high degree of unsaturated acyl groups found in guinea pig heart plasmalogens.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arthur G., Choy P. C. Acyl specificity of hamster heart CDP-choline 1,2-diacylglycerol phosphocholine transferase in phosphatidylcholine biosynthesis. Biochim Biophys Acta. 1984 Sep 12;795(2):221–229. doi: 10.1016/0005-2760(84)90069-9. [DOI] [PubMed] [Google Scholar]
- Arthur G., Mock T., Zaborniak C., Choy P. C. The distribution and acyl composition of plasmalogens in guinea pig heart. Lipids. 1985 Oct;20(10):693–698. doi: 10.1007/BF02534389. [DOI] [PubMed] [Google Scholar]
- Arthur G., Page L., Mock T., Choy P. C. The catabolism of plasmenylcholine in the guinea pig heart. Biochem J. 1986 Jun 1;236(2):475–480. doi: 10.1042/bj2360475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arvidson G. A. Structural and metabolic heterogeneity of rat liver glycerophosphatides. Eur J Biochem. 1968 May;4(4):478–486. doi: 10.1111/j.1432-1033.1968.tb00237.x. [DOI] [PubMed] [Google Scholar]
- Bell R. M., Coleman R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu Rev Biochem. 1980;49:459–487. doi: 10.1146/annurev.bi.49.070180.002331. [DOI] [PubMed] [Google Scholar]
- Chien K. R., Han A., Sen A., Buja L. M., Willerson J. T. Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Relationship to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane phospholipids. Circ Res. 1984 Mar;54(3):313–322. doi: 10.1161/01.res.54.3.313. [DOI] [PubMed] [Google Scholar]
- Fleming P. J., Hajra A. K. 1-Alkyl-sn-glycero-3-phosphate: acyl-CoA acyltransferase in rat brain microsomes. J Biol Chem. 1977 Mar 10;252(5):1663–1672. [PubMed] [Google Scholar]
- Gross R. W., Sobel B. E. Lysophosphatidylcholine metabolism in the rabbit heart. Characterization of metabolic pathways and partial purification of myocardial lysophospholipase-transacylase. J Biol Chem. 1982 Jun 25;257(12):6702–6708. [PubMed] [Google Scholar]
- LANDS W. E. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J Biol Chem. 1960 Aug;235:2233–2237. [PubMed] [Google Scholar]
- Lands W. E., Blank M. L., Nutter L. J., Privett O. S. A comparison of acyltransferase activities in vitro with the distribution of fatty acids in lecithins and triglycerides in vivo. Lipids. 1966 May;1(3):224–229. doi: 10.1007/BF02531877. [DOI] [PubMed] [Google Scholar]
- Man R. Y., Choy P. C. Lysophosphatidylcholine causes cardiac arrhythmia. J Mol Cell Cardiol. 1982 Mar;14(3):173–175. doi: 10.1016/0022-2828(82)90115-8. [DOI] [PubMed] [Google Scholar]
- Man R. Y., Slater T. L., Pelletier M. P., Choy P. C. Alterations of phospholipids in ischemic canine myocardium during acute arrhythmia. Lipids. 1983 Oct;18(10):677–681. doi: 10.1007/BF02534533. [DOI] [PubMed] [Google Scholar]
- Poole A. R., Howell J. I., Lucy J. A. Lysolecithin and cell fusion. Nature. 1970 Aug 22;227(5260):810–814. doi: 10.1038/227810a0. [DOI] [PubMed] [Google Scholar]
- Reitz R. C., Lands W. E., Christie W. W., Holman R. T. Effects of ethylenic bond position upon acyltransferase activity with isomeric cis,cis-octadecadienoyl coenzyme A thiol esters. J Biol Chem. 1968 May 10;243(9):2241–2246. [PubMed] [Google Scholar]
- Waku K., Lands W. E. Acyl coenzyme A:1-alkenyl-glycero-3-phosphorylcholine acyltransferase action in plasmalogen biosynthesis. J Biol Chem. 1968 May 25;243(10):2654–2659. [PubMed] [Google Scholar]
- Waku K., Nakazawa Y. Acyltransferae activity to 1-acyl-, 1-O-alkenyl-, and 1-O-alkyl-glycero-3-phosphorylcholine in Ehrlich ascites tumor cells. J Biochem. 1972 Aug;72(2):495–497. doi: 10.1093/oxfordjournals.jbchem.a129928. [DOI] [PubMed] [Google Scholar]
- Waku K., Nakazawa Y. Acyltransferase activity to 1-O-alkyl-glycero-3-phosphorylcholine in sarcoplasmic reticulum. J Biochem. 1970 Oct;68(4):459–466. doi: 10.1093/oxfordjournals.jbchem.a129376. [DOI] [PubMed] [Google Scholar]
- Wells M. A., Dittmer J. C. A microanalytical technique for the quantitative determination of twenty-four classes of brain lipids. Biochemistry. 1966 Nov;5(11):3405–3418. doi: 10.1021/bi00875a004. [DOI] [PubMed] [Google Scholar]
- Weltzien H. U. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim Biophys Acta. 1979 Aug 20;559(2-3):259–287. doi: 10.1016/0304-4157(79)90004-2. [DOI] [PubMed] [Google Scholar]
- Zelinski T. A., Savard J. D., Man R. Y., Choy P. C. Phosphatidylcholine biosynthesis in isolated hamster heart. J Biol Chem. 1980 Dec 10;255(23):11423–11428. [PubMed] [Google Scholar]