Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Jun 1;236(2):601–603. doi: 10.1042/bj2360601

The nucleotide sequence of a cytoplasmic tRNAPhe from Scenedesmus obliquus and comparison with a tRNATyr species.

G A Green, D S Jones
PMCID: PMC1146882  PMID: 3638966

Abstract

The nucleotide sequence of a cytoplasmic tRNAPhe from the eukaryotic green alga Scenedesmus obliquus was determined as: pG-G-C-U-U-G-A-U-A-m2G-C-U-C-A-G-C-D-Gm-G-G-A-G-A-G-C-m22G-p si-psi-A-G-A-Cm-U-G - A-A-m1G-A-psi-C-U-A-C-A-G-m7G-N-m5C-C-C-C-A-G-T-psi-C-G-m1A-U-m5C-Cm-U-G -G-G-U- C A-G-G-C-C-A-C-C-A-OH. The structure has some notable features. Unlike other tRNAPhe species from plant sources, it has an unmodified G as the first residue of the anticodon and m1G rather than a Y derivative as the residue following the anticodon. The sequence m5C(60)-Cm(61) is unique to this tRNA. The sequence of S. obliquus tRNAPhe shows close homology with S. obliquus tRNATyr.

Full text

PDF
601

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines, and pyrimidines in RNA. Nucleic Acids Res. 1977 Aug;4(8):2527–2538. doi: 10.1093/nar/4.8.2527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Green G. A., Jones D. S. The nucleotide sequences of a cytoplasmic and a chloroplast tRNATyr from Scenedesmus obliquus. Nucleic Acids Res. 1985 Mar 11;13(5):1659–1663. doi: 10.1093/nar/13.5.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Holmquist R., Jukes T. H., Pangburn S. Evolution of transfer RNA. J Mol Biol. 1973 Jun 25;78(1):91–116. doi: 10.1016/0022-2836(73)90430-0. [DOI] [PubMed] [Google Scholar]
  4. KIRBY K. S. ISOLATION AND CHARACTERIZATION OF RIBOSOMAL RIBONUCLEIC ACID. Biochem J. 1965 Jul;96:266–269. doi: 10.1042/bj0960266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lake J. A. Aminoacyl-tRNA binding at the recognition site is the first step of the elongation cycle of protein synthesis. Proc Natl Acad Sci U S A. 1977 May;74(5):1903–1907. doi: 10.1073/pnas.74.5.1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. McCoy J. M., Jones D. S. The nucleotide sequence of Scenedesmus obliquus chloroplast tRNAfMet. Nucleic Acids Res. 1980 Nov 11;8(21):5089–5093. doi: 10.1093/nar/8.21.5089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Miller J. P., Hussain Z., Schweizer M. P. The involvement of the anticodon adjacent modified nucleoside N-(9-(BETA-D-ribofuranosyl) purine-6-ylcarbamoyl)-threonine in the biological function of E. coli tRNAile. Nucleic Acids Res. 1976 May;3(5):1185–1201. doi: 10.1093/nar/3.5.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
  9. Olins P. O., Jones D. S. Nucleotide sequence of Scenedesmus obliquus cytoplasmic initiator tRNA. Nucleic Acids Res. 1980 Feb 25;8(4):715–729. [PMC free article] [PubMed] [Google Scholar]
  10. Silberklang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. doi: 10.1016/0076-6879(79)59072-7. [DOI] [PubMed] [Google Scholar]
  11. Sprinzl M., Moll J., Meissner F., Hartmann T. Compilation of tRNA sequences. Nucleic Acids Res. 1985;13 (Suppl):r1–49. doi: 10.1093/nar/13.suppl.r1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stanley J., Vassilenko S. A different approach to RNA sequencing. Nature. 1978 Jul 6;274(5666):87–89. doi: 10.1038/274087a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES