Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Jun 15;236(3):845–852. doi: 10.1042/bj2360845

Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor.

E J Pierce, M D Davison, R G Parton, W H Habig, D R Critchley
PMCID: PMC1146918  PMID: 3539106

Abstract

Binding of 125I-labelled tetanus toxin to rat brain membranes in 25 mM-Tris/acetate, pH 6.0, was saturable and there was a single class of high-affinity site (KD 0.26-1.14 nM) present in high abundance (Bmax. 0.9-1.89 nmol/mg). The sites were largely resistant to proteolysis and heating but were markedly sensitive to neuraminidase. Trisialogangliosides were effective inhibitors of toxin binding (IC50 10 nM) and trisialogangliosides inserted into membranes lacking a toxin receptor were able to bind toxin with high affinity (KD 2.6 nM). The results are consistent with previous studies and the hypothesis that di- and trisialogangliosides act as the primary receptor for tetanus toxin under these conditions. In contrast, when toxin binding was assayed in Krebs-Ringer buffer, pH 7.4, binding was greatly reduced, was non-saturable and competition binding studies showed evidence for a small number of high-affinity sites (KD 0.42 nM, Bmax. 0.90 pmol/mg) and a larger number of low-affinity sites (KD 146 nM, Bmax. 179 pmol/mg). Treatment of membranes with proteinases, heat, and neuraminidase markedly reduced binding. Trisialogangliosides were poor inhibitors of toxin binding (IC50 11.0 microM), and trisialogangliosides inserted into membranes bound toxin with low affinity. The results suggest that in physiological buffers tetanus toxin binds with high affinity to a protein receptor, and that gangliosides represent only a low-affinity site.

Full text

PDF
845

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ando S., Chang N. C., Yu R. K. High-performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species. Anal Biochem. 1978 Sep;89(2):437–450. doi: 10.1016/0003-2697(78)90373-1. [DOI] [PubMed] [Google Scholar]
  2. Baron M. D., Sönksen P. H. Characterization of two insulin-binding components of rat-liver plasma membranes. Biosci Rep. 1982 Oct;2(10):785–793. doi: 10.1007/BF01114938. [DOI] [PubMed] [Google Scholar]
  3. Bizzini B. Tetanus toxin. Microbiol Rev. 1979 Jun;43(2):224–240. doi: 10.1128/mr.43.2.224-240.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Critchley D. R., Ansell S., Perkins R., Dilks S., Ingram J. Isolation of cholera toxin receptors from a mouse fibroblast and lymphoid cell line by immune precipitation. J Supramol Struct. 1979;12(2):273–291. doi: 10.1002/jss.400120211. [DOI] [PubMed] [Google Scholar]
  5. Critchley D. R., Magnani J. L., Fishman P. H. Interaction of cholera toxin with rat intestinal brush border membranes. Relative roles of gangliosides and galactoproteins as toxin receptors. J Biol Chem. 1981 Aug 25;256(16):8724–8731. [PubMed] [Google Scholar]
  6. Dimpfel W., Habermann E. Binding characteristics of 125I-labelled tetanus toxin to primary tissue cultures from mouse embryonic CNS. J Neurochem. 1977 Dec;29(6):1111–1120. doi: 10.1111/j.1471-4159.1977.tb06516.x. [DOI] [PubMed] [Google Scholar]
  7. Dimpfel W., Huang R. T., Habermann E. Gangliosides in nervous tissue cultures and binding of 125I-labelled tetanus toxin, a neuronal marker. J Neurochem. 1977 Aug;29(2):329–334. doi: 10.1111/j.1471-4159.1977.tb09626.x. [DOI] [PubMed] [Google Scholar]
  8. Eidels L., Proia R. L., Hart D. A. Membrane receptors for bacterial toxins. Microbiol Rev. 1983 Dec;47(4):596–620. doi: 10.1128/mr.47.4.596-620.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fredman P., Nilsson O., Tayot J. L., Svennerholm L. Separation of gangliosides on a new type of anion-exchange resin. Biochim Biophys Acta. 1980 Apr 18;618(1):42–52. doi: 10.1016/0005-2760(80)90052-1. [DOI] [PubMed] [Google Scholar]
  10. Goldberg R. L., Costa T., Habig W. H., Kohn L. D., Hardegree M. C. Characterization of fragment C and tetanus toxin binding to rat brain membranes. Mol Pharmacol. 1981 Nov;20(3):565–570. [PubMed] [Google Scholar]
  11. Habermann E., Bigalke H., Heller I. Inhibition of synaptosomal choline uptake by tetanus and botulinum A toxin. Partial dissociation of fixation and effect of tetanus toxin. Naunyn Schmiedebergs Arch Pharmacol. 1981 Apr;316(2):135–142. doi: 10.1007/BF00505307. [DOI] [PubMed] [Google Scholar]
  12. Habermann E. Tetanus toxin and botulinum A neurotoxin inhibit and at higher concentrations enhance noradrenaline outflow from particulate brain cortex in batch. Naunyn Schmiedebergs Arch Pharmacol. 1981 Dec;318(2):105–111. doi: 10.1007/BF00508834. [DOI] [PubMed] [Google Scholar]
  13. Higashida H., Sugimoto N., Ozutsumi K., Miki N., Matsuda M. Tetanus toxin: a rapid and selective blockade of the calcium, but not sodium, component of action potentials in cultured neuroblastoma N1E-115 cells. Brain Res. 1983 Nov 21;279(1-2):363–368. doi: 10.1016/0006-8993(83)90211-1. [DOI] [PubMed] [Google Scholar]
  14. Holmgren J., Elwing H., Fredman P., Svennerholm L. Polystyrene-adsorbed gangliosides for investigation of the structure of the tetanus-toxin receptor. Eur J Biochem. 1980 May;106(2):371–379. doi: 10.1111/j.1432-1033.1980.tb04583.x. [DOI] [PubMed] [Google Scholar]
  15. Kenimer J. G., Habig W. H., Hardegree M. C. Monoclonal antibodies as probes of tetanus toxin structure and function. Infect Immun. 1983 Dec;42(3):942–948. doi: 10.1128/iai.42.3.942-948.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ledley F. D., Lee G., Kohn L. D., Habig W. H., Hardegree M. C. Tetanus toxin interactions with thyroid plasma membranes. Implications for structure and function of tetanus toxin receptors and potential pathophysiological significance. J Biol Chem. 1977 Jun 25;252(12):4049–4055. [PubMed] [Google Scholar]
  17. Lee G., Grollman E. F., Dyer S., Beguinot F., Kohn L. D., Habig W. H., Hardegree M. C. Tetanus toxin and thyrotropin interactions with rat brain membrane preparations. J Biol Chem. 1979 May 25;254(10):3826–3832. [PubMed] [Google Scholar]
  18. MILLER D., CRANE R. K. A procedure for the isolation of the epithelial brush border membrane of hamster small intestine. Anal Biochem. 1961 Jun;2:284–286. doi: 10.1016/s0003-2697(61)80014-6. [DOI] [PubMed] [Google Scholar]
  19. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  20. Mellanby J., Green J. How does tetanus toxin act? Neuroscience. 1981;6(3):281–300. doi: 10.1016/0306-4522(81)90123-8. [DOI] [PubMed] [Google Scholar]
  21. Morris N. P., Consiglio E., Kohn L. D., Habig W. H., Hardegree M. C., Helting T. B. Interaction of fragments B and C of tetanus toxin with neural and thyroid membranes and with gangliosides. J Biol Chem. 1980 Jul 10;255(13):6071–6076. [PubMed] [Google Scholar]
  22. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  23. Robinson J. P., Hash J. H. A review of the molecular structure of tetanus toxin. Mol Cell Biochem. 1982 Oct 1;48(1):33–44. doi: 10.1007/BF00214820. [DOI] [PubMed] [Google Scholar]
  24. Rogers T. B., Snyder S. H. High affinity binding of tetanus toxin to mammalian brain membranes. J Biol Chem. 1981 Mar 10;256(5):2402–2407. [PubMed] [Google Scholar]
  25. Rosenthal H. E. A graphic method for the determination and presentation of binding parameters in a complex system. Anal Biochem. 1967 Sep;20(3):525–532. doi: 10.1016/0003-2697(67)90297-7. [DOI] [PubMed] [Google Scholar]
  26. SVENNERHOLM L. CHROMATOGRAPHIC SEPARATION OF HUMAN BRAIN GANGLIOSIDES. J Neurochem. 1963 Sep;10:613–623. doi: 10.1111/j.1471-4159.1963.tb08933.x. [DOI] [PubMed] [Google Scholar]
  27. Simpson L. L. Fragment C of tetanus toxin antagonizes the neuromuscular blocking properties of native tetanus toxin. J Pharmacol Exp Ther. 1984 Mar;228(3):600–604. [PubMed] [Google Scholar]
  28. Streuli C. H., Patel B., Critchley D. R. The cholera toxin receptor ganglioside GM remains associated with triton X-100 cytoskeletons of BALB/c-3T3 cells. Exp Cell Res. 1981 Dec;136(2):247–254. doi: 10.1016/0014-4827(81)90002-1. [DOI] [PubMed] [Google Scholar]
  29. Svennerholm L., Fredman P. A procedure for the quantitative isolation of brain gangliosides. Biochim Biophys Acta. 1980 Jan 18;617(1):97–109. doi: 10.1016/0005-2760(80)90227-1. [DOI] [PubMed] [Google Scholar]
  30. Wellhöner N. H. Tetanus neurotoxin. Rev Physiol Biochem Pharmacol. 1982;93:1–68. doi: 10.1007/BFb0032668. [DOI] [PubMed] [Google Scholar]
  31. Wendon L. M., Gill D. M. Tetanus toxin action on cultured nerve cells does it modify a neuronal protein? Brain Res. 1982 Apr 22;238(1):292–297. doi: 10.1016/0006-8993(82)90800-9. [DOI] [PubMed] [Google Scholar]
  32. Williams R. S., Tse C. K., Dolly J. O., Hambleton P., Melling J. Radioiodination of botulinum neurotoxin type A with retention of biological activity and its binding to brain synaptosomes. Eur J Biochem. 1983 Mar 15;131(2):437–445. doi: 10.1111/j.1432-1033.1983.tb07282.x. [DOI] [PubMed] [Google Scholar]
  33. Yavin E. Gangliosides mediate association of tetanus toxin with neural cells in culture. Arch Biochem Biophys. 1984 Apr;230(1):129–137. doi: 10.1016/0003-9861(84)90093-6. [DOI] [PubMed] [Google Scholar]
  34. Young A. B., Snyder S. H. Strychnine binding associated with glycine receptors of the central nervous system. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2832–2836. doi: 10.1073/pnas.70.10.2832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van Heyningen S. Tetanus toxin. Pharmacol Ther. 1980;11(1):141–157. doi: 10.1016/0163-7258(80)90070-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES