Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Jul 15;237(2):333–342. doi: 10.1042/bj2370333

Analysis of cell-growth-phase-related variations in hyaluronate synthase activity of isolated plasma-membrane fractions of cultured human skin fibroblasts.

N Mian
PMCID: PMC1146992  PMID: 3099751

Abstract

Hyaluronate synthase activity is localized exclusively in plasma-membrane fractions of cultured human skin fibroblasts. The enzyme activity of plasma membranes prepared from exponential-growth-phase cells was about 6.5 times that of stationary-growth-phase cells. Hyaluronate synthase from exponential-growth-phase cells exhibited lower Km and higher Vmax. values for both UDP-N-acetylglucosamine and UDP-glucuronic acid and higher rate of elongation of hyaluronate chains compared with the enzyme from stationary-growth-phase cells. Hyaluronate synthase exhibited an extremely short half-life, 2.2 h and 3.8 h respectively when cells were treated with cycloheximide and actinomycin D. The cell-growth-phase-dependent variations in hyaluronate synthase activity appear to be due to its high turnover rate as well as due to some post-translational modification of the enzyme protein as cells progress from early exponential to stationary growth phase. The isolated plasma membranes contained a protein (Mr approx. 450,000) that was selectively autophosphorylated from [gamma-32P]ATP in vitro in the presence of hyaluronate precursors in the reaction mixture and that also exhibited some hyaluronate-synthesis-related properties. The 32P-labelled protein isolated from plasma membranes of exponentially growing cells expressed an efficient UDP-[14C]glucuronic acid- and UDP-N-acetyl[3H]glucosamine-binding activity and was able to synthesize oligosaccharides (Mr 5000) of [14C]glucuronic acid and N-acetyl[3H]glucosamine residues. The corresponding protein of stationary-growth-phase cells, which expressed much higher nucleotide-sugar-precursor-binding activity, appeared to have lost its oligosaccharide-synthesizing activity.

Full text

PDF
333

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appel A., Horwitz A. L., Dorfman A. Cell-free synthesis of hyaluronic acid in Marfan syndrome. J Biol Chem. 1979 Dec 10;254(23):12199–12203. [PubMed] [Google Scholar]
  2. BURTON K. The relation between the synthesis of deoxyribonucleic acid and the synthesis of protein in the multiplication of bacteriophage T2. Biochem J. 1955 Nov;61(3):473–483. doi: 10.1042/bj0610473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bergeron J. J., Ehrenreich J. H., Siekevitz P., Palade G. E. Golgi fractions prepared from rat liver homogenates. II. Biochemical characterization. J Cell Biol. 1973 Oct;59(1):73–88. doi: 10.1083/jcb.59.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Branton P. E. Protein phosphorylation and the proliferation of chick embryo fibroblasts: analysis by in vitro phosphorylation using isolated plasma membranes and whole cell homogenates. Can J Biochem. 1980 Jan;58(1):30–39. doi: 10.1139/o80-005. [DOI] [PubMed] [Google Scholar]
  5. DAVIDSON E. H., ALLFREY V. G., MIRSKY A. E. Gene expression in differentiated cells. Proc Natl Acad Sci U S A. 1963 Jan 15;49:53–60. doi: 10.1073/pnas.49.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DAVIDSON E. H. Heritability and control of differentiated function in cultured cells. J Gen Physiol. 1963 May;46:983–998. doi: 10.1085/jgp.46.5.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Danielsen E. M., Cowell G. M., Norén O., Sjöström H. Biosynthesis of microvillar proteins. Biochem J. 1984 Jul 1;221(1):1–14. doi: 10.1042/bj2210001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davies P., Shizuta Y., Olden K., Gallo M., Pastan I. Phosphorylation of filamin and other proteins in cultured fibroblasts. Biochem Biophys Res Commun. 1977 Jan 10;74(1):300–307. doi: 10.1016/0006-291x(77)91408-5. [DOI] [PubMed] [Google Scholar]
  9. EARL D. C., KORNER A. THE ISOLATION AND PROPERTIES OF CARDIAC RIBOSOMES AND POLYSOMES. Biochem J. 1965 Mar;94:721–734. doi: 10.1042/bj0940721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GIANETTO R., DE DUVE C. Tissue fractionation studies. 4. Comparative study of the binding of acid phosphatase, beta-glucuronidase and cathepsin by rat-liver particles. Biochem J. 1955 Mar;59(3):433–438. doi: 10.1042/bj0590433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hopwood J. J., Dorfman A. Glycosaminoglycan synthesis by cultured human skin fibroblasts after transformation with simian virus 40. J Biol Chem. 1977 Jul 25;252(14):4777–4785. [PubMed] [Google Scholar]
  12. Hronowski L., Anastassiades T. P. The effect of cell density on net rates of glycosaminoglycan synthesis and secretion by cultured rat fibroblasts. J Biol Chem. 1980 Nov 10;255(21):10091–10099. [PubMed] [Google Scholar]
  13. Ipata P. L. Sheep brain 5'-nucleotidase. Some enzymic properties and allosteric inhibition by nucleoside triphosphates. Biochemistry. 1968 Feb;7(2):507–515. doi: 10.1021/bi00842a004. [DOI] [PubMed] [Google Scholar]
  14. Joos T. F., Anderer A. Characterization of specific differences in protein phosphorylation of the plasma membrane and the endoplasmic reticulum of mouse fibroblasts. Biochim Biophys Acta. 1979 Apr 18;584(1):104–115. doi: 10.1016/0304-4165(79)90240-x. [DOI] [PubMed] [Google Scholar]
  15. Kittlick P. D., Neupert G., Bolck F. Acid mucopolysaccharides in fibroblast cultures. 1. Influence of cell density, pH-value and lactate concentration on the MPS distribution pattern. Exp Pathol (Jena) 1976;12(3-4):149–158. [PubMed] [Google Scholar]
  16. Kittlick P. D., Neupert G. Hypoxia in fibroblast cultures. 2. Influence of pH on the distribution pattern of acid mucopolysaccharides. Exp Pathol (Jena) 1975;10(5-6):229–240. [PubMed] [Google Scholar]
  17. Koyama D., Tomida M., Ono T. The enhanced production of hyaluronic acid by cultured rat fibroblast cells treated with cyclic AMP and its dibutyryl derivative. J Cell Physiol. 1975 Dec;87(2):189–197. doi: 10.1002/jcp.1040870207. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Matalon R., Dorfman A. Acid mucopolysaccharides in cultured fibroblasts of cystic fibrosis of the pancreas. Biochem Biophys Res Commun. 1968 Dec 30;33(6):954–958. doi: 10.1016/0006-291x(68)90405-1. [DOI] [PubMed] [Google Scholar]
  20. Mian N. Characterization of a high-Mr plasma-membrane-bound protein and assessment of its role as a constituent of hyaluronate synthase complex. Biochem J. 1986 Jul 15;237(2):343–357. doi: 10.1042/bj2370343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pekarthy J. M., Short J., Lansing A. I., Lieberman I. Function and control of liver alkaline phosphatase. J Biol Chem. 1972 Mar 25;247(6):1767–1774. [PubMed] [Google Scholar]
  22. Prehm P. Hyaluronate is synthesized at plasma membranes. Biochem J. 1984 Jun 1;220(2):597–600. doi: 10.1042/bj2200597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Prehm P. Induction of hyaluronic acid synthesis in teratocarcinoma stem cells by retinoic acid. FEBS Lett. 1980 Mar 10;111(2):295–298. doi: 10.1016/0014-5793(80)80813-1. [DOI] [PubMed] [Google Scholar]
  24. Prehm P. Synthesis of hyaluronate in differentiated teratocarcinoma cells. Mechanism of chain growth. Biochem J. 1983 Apr 1;211(1):191–198. doi: 10.1042/bj2110191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rubin C. S., Rosen O. M. Protein phosphorylation. Annu Rev Biochem. 1975;44:831–887. doi: 10.1146/annurev.bi.44.070175.004151. [DOI] [PubMed] [Google Scholar]
  26. Sottocasa G. L., Kuylenstierna B., Ernster L., Bergstrand A. An electron-transport system associated with the outer membrane of liver mitochondria. A biochemical and morphological study. J Cell Biol. 1967 Feb;32(2):415–438. doi: 10.1083/jcb.32.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stoolmiller A. C., Dorfman A. The biosynthesis of hyaluronic acid by Streptococcus. J Biol Chem. 1969 Jan 25;244(2):236–246. [PubMed] [Google Scholar]
  28. Tajima T., Iijima K., Watanabe T., Yamaguchi H. The influence of calcium ions on the synthesis of collagen and glycosaminoglycans in human diploid cells in culture. Exp Pathol. 1981;19(4):219–225. doi: 10.1016/s0232-1513(81)80067-9. [DOI] [PubMed] [Google Scholar]
  29. Tomida M., Koyama H., Ono T. Effects of adenosine 3':5'-cyclic monophosphate and serum on synthesis of hyaluronic acid in confluent rat fibroblasts. Biochem J. 1977 Mar 15;162(3):539–543. doi: 10.1042/bj1620539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tomida M., Koyama H., Ono T. Induction of hyaluronic acid synthetase activity in rat fibroblasts by medium change of confluent cultures. J Cell Physiol. 1975 Aug;86(1):121–130. doi: 10.1002/jcp.1040860114. [DOI] [PubMed] [Google Scholar]
  31. Toole B. P., Biswas C., Gross J. Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6299–6303. doi: 10.1073/pnas.76.12.6299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Toole B. P. Hyaluronate turnover during chondrogenesis in the developing chick limb and axial skeleton. Dev Biol. 1972 Nov;29(3):321–329. doi: 10.1016/0012-1606(72)90071-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES