Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Aug 1;237(3):691–698. doi: 10.1042/bj2370691

The involvement of pyruvate cycling in the metabolism of aspartate and glycerate by the perfused rat kidney.

R C Scaduto Jr, E J Davis
PMCID: PMC1147046  PMID: 3800911

Abstract

The metabolism of glycerate and aspartate was investigated in perfused rat kidneys. The major pathway active for aspartate metabolism and NH3 production was found to include transamination, and not the purine nucleotide cycle. Pyruvate cycling was identified as a means by which reducing potential is generated in the cytosol for glucose and lactate production from these substrates. Inhibition of mitochondrial pyruvate transport caused an inhibition of glucose production, accumulation of lactate and pyruvate in the perfusate, and a decrease in the [lactate]/[pyruvate] ratio in kidneys perfused with aspartate. These data indicate a role of mitochondrial pyruvate transport in the provision of cytosolic reducing potential. With either aspartate or glycerate, 3-mercaptopicolinic acid (3-MPA) suppressed glucose synthesis and caused accumulation of malate plus fumarate within the kidney. Glucose production from glycerate was much less sensitive to the presence of 3-MPA than was glucose production from aspartate, illustrating a phosphoenolpyruvate carboxykinase (PEPCK)-independent pathway for the cycling of pyruvate. In aspartate-perfused kidneys, the presence of 3-MPA, at concentrations that completely blocked glucose accumulation in the perfusate, did not affect the rate of NH3 production and had only a minor effect on the rate of aspartate uptake. These data allow for an estimation of the rate of pyruvate formation from aspartate of about 1 mumol/min per kidney under conditions of complete PEPCK inhibition. Thus a PEPCK-independent pathway is operative for amino acid oxidation and pyruvate formation in perfused kidneys. The NADP-linked, but not the NAD-linked, 'malic' enzyme activity of the kidney cortex was found to be sufficient to catalyse this estimated rate of pyruvate formation.

Full text

PDF
691

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aragón J. J., Lowenstein J. M. The purine-nucleotide cycle. Comparison of the levels of citric acid cycle intermediates with the operation of the purine nucleotide cycle in rat skeletal muscle during exercise and recovery from exercise. Eur J Biochem. 1980 Sep;110(2):371–377. doi: 10.1111/j.1432-1033.1980.tb04877.x. [DOI] [PubMed] [Google Scholar]
  2. Berry M. N. Energy-dependent reduction of pyruvate to lactate by intact isolated parenchymal cells from rat liver. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1449–1456. doi: 10.1016/s0006-291x(71)80248-6. [DOI] [PubMed] [Google Scholar]
  3. Bogusky R. T., Aoki T. T. Early events in the initiation of ammonia formation in kidney. J Biol Chem. 1983 Mar 10;258(5):2795–2801. [PubMed] [Google Scholar]
  4. Bogusky R. T., Lowenstein L. M., Aoki T. T. The relationship between glutamate deamination and gluconeogenesis in kidney. Biochem J. 1983 Mar 15;210(3):695–698. doi: 10.1042/bj2100695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis-van Thienen W., Davis E. J. The effects of energetic steady state, pyruvate concentration, and octanoyl-(--)-carnitine on the relative rates of carboxylation and decarboxylation of pyruvate by rat liver mitochondria. J Biol Chem. 1981 Aug 25;256(16):8371–8378. [PubMed] [Google Scholar]
  6. Davis E. J., Baugh S. Interference by ethanol of coupling between gluconeogenesis and ureagenesis from proline in isolated hepatocytes. Int J Biochem. 1985;17(6):727–729. doi: 10.1016/0020-711x(85)90373-8. [DOI] [PubMed] [Google Scholar]
  7. Davis E. J., Bremer J. Studies with isolated surviving rat hearts. Interdependence of free amino acids and citric-acid-cycle intermediates. Eur J Biochem. 1973 Sep 21;38(1):86–97. doi: 10.1111/j.1432-1033.1973.tb03037.x. [DOI] [PubMed] [Google Scholar]
  8. Elbers R., Heldt H. W., Schmucker P., Soboll S., Wiese H. Measurement of the ATP/ADP ratio in mitochondria and in the extramitochondrial compartment by fractionation of freeze-stopped liver tissue in non-aqueous media. Hoppe Seylers Z Physiol Chem. 1974 Mar;355(3):378–393. doi: 10.1515/bchm2.1974.355.1.378. [DOI] [PubMed] [Google Scholar]
  9. Freidmann B., Goodman E. H., Jr, Saunders H. L., Kostos V., Weinhouse S. An estimation of pyruvate recycling during gluconeogenesis in the perfused rat liver. Arch Biochem Biophys. 1971 Apr;143(2):566–578. doi: 10.1016/0003-9861(71)90241-4. [DOI] [PubMed] [Google Scholar]
  10. HOPPER S., SEGAL H. L. Kinetic studies of rat liver glutamicalanine transaminase. J Biol Chem. 1962 Oct;237:3189–3195. [PubMed] [Google Scholar]
  11. Halestrap A. P., Denton R. M. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J. 1974 Feb;138(2):313–316. doi: 10.1042/bj1380313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hems D. A., Gaja G. Carbohydrate metabolism in the isolated perfused rat kidney. Biochem J. 1972 Jun;128(2):421–426. doi: 10.1042/bj1280421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hensgens H. E., Meijer A. J., Williamson J. R., Gimpel J. A., Tager J. M. Prolone metabolism in isolated rat liver cells. Biochem J. 1978 Mar 15;170(3):699–707. doi: 10.1042/bj1700699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Janssens P., Hems R., Ross B. The metabolic fate of lactate in renal cortical tubules. Biochem J. 1980 Jul 15;190(1):27–37. doi: 10.1042/bj1900027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LaNoue K. F., Meijer A. J., Brouwer A. Evidence for electrogenic aspartate transport in rat liver mitochondria. Arch Biochem Biophys. 1974 Apr 2;161(2):544–550. doi: 10.1016/0003-9861(74)90337-3. [DOI] [PubMed] [Google Scholar]
  16. Lee S. H., Davis E. J. Carboxylation and decarboxylation reactions. Anaplerotic flux and removal of citrate cycle intermediates in skeletal muscle. J Biol Chem. 1979 Jan 25;254(2):420–430. [PubMed] [Google Scholar]
  17. Lin R. C., Davis E. J. Malic enzymes of rabbit heart mitochondria. Separation and comparison of some characteristics of a nicotinamide adenine dinucleotide-preferring and a nicotinamide adenine dinucleotide phosphate-specific enzyme. J Biol Chem. 1974 Jun 25;249(12):3867–3875. [PubMed] [Google Scholar]
  18. Mapes J. P., Harris R. A. Inhibition of gluconeogenesis and lactate formation from pyruvate by N6, O2'-dibutyryl adenosine 3':5'-monophosphate. J Biol Chem. 1976 Oct 25;251(20):6189–6196. [PubMed] [Google Scholar]
  19. Nishiitsutsuji-Uwo J. M., Ross B. D., Krebs H. A. Metabolic activities of the isolated perfused rat kidney. Biochem J. 1967 Jun;103(3):852–862. doi: 10.1042/bj1030852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pitts R. F. Metabolism of amino acids by the perfused rat kidney. Am J Physiol. 1971 Apr;220(4):862–867. doi: 10.1152/ajplegacy.1971.220.4.862. [DOI] [PubMed] [Google Scholar]
  21. Rognstad R. Cyclic AMP induced inhibition of pyruvate kinase flux in the intact liver cell. Biochem Biophys Res Commun. 1975 Apr 21;63(4):900–905. doi: 10.1016/0006-291x(75)90653-1. [DOI] [PubMed] [Google Scholar]
  22. Rognstad R., Katz J. Gluconeogenesis in the kidney cortex. Quantitative estimation of carbon flow. J Biol Chem. 1972 Oct 10;247(19):6047–6054. [PubMed] [Google Scholar]
  23. Rognstad R. The role of mitochondrial pyruvate transport in the control of lactate gluconeogenesis. Int J Biochem. 1983;15(12):1417–1421. doi: 10.1016/0020-711x(83)90073-3. [DOI] [PubMed] [Google Scholar]
  24. Ross B. D., Hems R., Krebs H. A. The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J. 1967 Mar;102(3):942–951. doi: 10.1042/bj1020942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SHIGEURA H. T., GORDON C. N. The mechanism of action of hadacidin. J Biol Chem. 1962 Jun;237:1937–1940. [PubMed] [Google Scholar]
  26. Saggerson E. D. A study of regulation of gluconeogenesis and the supply of cytosolic reducing equivalents for lactate formation in rat kidney-cortical-tubule fragments incubated with pyruvate. Biochem J. 1978 Jul 15;174(1):131–142. doi: 10.1042/bj1740131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scaduto R. C., Jr, Davis E. J. Serine synthesis by an isolated perfused rat kidney preparation. Biochem J. 1985 Sep 1;230(2):303–311. doi: 10.1042/bj2300303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Strzelecki T., Rogulski J., Angielski S. The purine nucleotide cycle and ammonia formation from glutamine by rat kidney slices. Biochem J. 1983 Jun 15;212(3):705–711. doi: 10.1042/bj2120705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tannen R. L. Ammonia metabolism. Am J Physiol. 1978 Oct;235(4):F265–F277. doi: 10.1152/ajprenal.1978.235.4.F265. [DOI] [PubMed] [Google Scholar]
  30. Tischler M. E., Pachence J., Williamson J. R., La Noue K. F. Mechanism of glutamate-aspartate translocation across the mitochondrial inner membrane. Arch Biochem Biophys. 1976 Apr;173(2):448–461. doi: 10.1016/0003-9861(76)90282-4. [DOI] [PubMed] [Google Scholar]
  31. Vaartjes W. J., Geelen M. J., van den Bergh S. G. Accumulation of pyruvate by isolated rat liver mitochondria. Biochim Biophys Acta. 1979 Oct 10;548(1):38–47. doi: 10.1016/0005-2728(79)90185-3. [DOI] [PubMed] [Google Scholar]
  32. Watford M., Vinay P., Lemieux G., Gougoux A. The regulation of glucose and pyruvate formation from glutamine and citric-acid-cycle intermediates in the kidney cortex of rats, dogs, rabbits and guinea pigs. Biochem J. 1980 Jun 15;188(3):741–748. doi: 10.1042/bj1880741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wojtczak A. B., Walajtys E. Mitochondrial oxaloacetate decarboxylase from rat liver. Biochim Biophys Acta. 1974 May 22;347(2):168–182. doi: 10.1016/0005-2728(74)90042-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES