Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Aug 1;237(3):899–906. doi: 10.1042/bj2370899

A systematic series of synthetic chromophoric substrates for aspartic proteinases.

B M Dunn, M Jimenez, B F Parten, M J Valler, C E Rolph, J Kay
PMCID: PMC1147073  PMID: 3541904

Abstract

The hydrolysis of the chromogenic peptide Pro-Thr-Glu-Phe-Phe(4-NO2)-Arg-Leu at the Phe-Phe(4-NO2) bond by nine aspartic proteinases of animal origin and seven enzymes from micro-organisms is described [Phe(4-NO2) is p-nitro-L-phenylalanine]. A further series of six peptides was synthesized in which the residue in the P3 position was systematically varied from hydrophobic to hydrophilic. The Phe-Phe(4-NO2) bond was established as the only peptide bond cleaved, and kinetic constants were obtained for the hydrolysis of these peptide substrates by a representative selection of aspartic proteinases of animal and microbial origin. The value of these water-soluble substrates for structure-function investigations is discussed.

Full text

PDF
899

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afting E. G., Recker M. L. Two-step affinity-chromatographic purification of cathepsin D from pig myometrium with high yield. Biochem J. 1981 Aug 1;197(2):519–522. doi: 10.1042/bj1970519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agarwal N., Rich D. H. An improved cathepsin-D substrate and assay procedure. Anal Biochem. 1983 Apr 1;130(1):158–165. doi: 10.1016/0003-2697(83)90663-2. [DOI] [PubMed] [Google Scholar]
  3. Andreeva N. S., Zdanov A. S., Gustchina A. E., Fedorov A. A. Structure of ethanol-inhibited porcine pepsin at 2-A resolution and binding of the methyl ester of phenylalanyl-diiodotyrosine to the enzyme. J Biol Chem. 1984 Sep 25;259(18):11353–11365. [PubMed] [Google Scholar]
  4. Blum M., Cunningham A., Bendiner M., Hofmann T. Penicillopepsin, the aspartic proteinase from Penicillium janthinellum: substrate-binding effects and intermediates in transpeptidation reactions. Biochem Soc Trans. 1985 Dec;13(6):1044–1046. doi: 10.1042/bst0131044. [DOI] [PubMed] [Google Scholar]
  5. Bott R., Subramanian E., Davies D. R. Three-dimensional structure of the complex of the Rhizopus chinensis carboxyl proteinase and pepstatin at 2.5-A resolution. Biochemistry. 1982 Dec 21;21(26):6956–6962. doi: 10.1021/bi00269a052. [DOI] [PubMed] [Google Scholar]
  6. Dreyer T., Valler M. J., Kay J., Charlton P., Dunn B. M. The selectivity of action of the aspartic-proteinase inhibitor IA3 from yeast (Saccharomyces cerevisiae). Biochem J. 1985 Nov 1;231(3):777–779. doi: 10.1042/bj2310777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dunn B. M., Fink A. L. Cryoenzymology of porcine pepsin. Biochemistry. 1984 Oct 23;23(22):5241–5247. doi: 10.1021/bi00317a023. [DOI] [PubMed] [Google Scholar]
  8. Dunn B. M., Kammermann B., McCurry K. R. The synthesis, purification, and evaluation of a chromophoric substrate for pepsin and other aspartyl proteases: design of a substrate based on subsite preferences. Anal Biochem. 1984 Apr;138(1):68–73. doi: 10.1016/0003-2697(84)90770-x. [DOI] [PubMed] [Google Scholar]
  9. Dunn B. M., Lewitt M., Pham C. Inhibition of pepsin by analogues of pepsinogen-(1-12)-peptide with substitutions in the 4-7 sequence region. Biochem J. 1983 Feb 1;209(2):355–362. doi: 10.1042/bj2090355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foltmann B. A review on prorennin and rennin. C R Trav Lab Carlsberg. 1966;35(8):143–231. [PubMed] [Google Scholar]
  11. Fruton J. S. The specificity and mechanism of pepsin action. Adv Enzymol Relat Areas Mol Biol. 1970;33:401–443. doi: 10.1002/9780470122785.ch9. [DOI] [PubMed] [Google Scholar]
  12. Hofmann T., Fink A. L., Dunn B. M. Cryoenzymology of penicillopepsin; with an appendix: mechanism of action of aspartyl proteinases. Biochemistry. 1984 Oct 23;23(22):5247–5256. doi: 10.1021/bi00317a024. [DOI] [PubMed] [Google Scholar]
  13. Hofmann T., Hodges R. S. A new chromophoric substrate for penicillopepsin and other fungal aspartic proteinases. Biochem J. 1982 Jun 1;203(3):603–610. doi: 10.1042/bj2030603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. James M. N., Sielecki A. R. Structure and refinement of penicillopepsin at 1.8 A resolution. J Mol Biol. 1983 Jan 15;163(2):299–361. doi: 10.1016/0022-2836(83)90008-6. [DOI] [PubMed] [Google Scholar]
  15. Jencks W. P. Binding energy, specificity, and enzymic catalysis: the circe effect. Adv Enzymol Relat Areas Mol Biol. 1975;43:219–410. doi: 10.1002/9780470122884.ch4. [DOI] [PubMed] [Google Scholar]
  16. Martin P. Hydrolysis of the synthetic chromophoric hexapeptide Leu-Ser-Phe(NO2)-Nle-Ala-Leu-OMe catalyzed by bovine pepsin A. Dependence on pH and effect of enzyme phosphorylation level. Biochim Biophys Acta. 1984 Nov 23;791(1):28–36. doi: 10.1016/0167-4838(84)90277-2. [DOI] [PubMed] [Google Scholar]
  17. Martin P., Trieu-Cuot P., Collin J. C., Ribadeau Dumas B. Purification and characterization of bovine gastricsin. Eur J Biochem. 1982 Feb;122(1):31–39. doi: 10.1111/j.1432-1033.1982.tb05844.x. [DOI] [PubMed] [Google Scholar]
  18. Pearl L., Blundell T. The active site of aspartic proteinases. FEBS Lett. 1984 Aug 20;174(1):96–101. doi: 10.1016/0014-5793(84)81085-6. [DOI] [PubMed] [Google Scholar]
  19. Pohl J., Baudys M., Kostka V. Chromophoric peptide substrates for activity determination of animal aspartic proteinases in the presence of their zymogens: a novel assay. Anal Biochem. 1983 Aug;133(1):104–109. doi: 10.1016/0003-2697(83)90228-2. [DOI] [PubMed] [Google Scholar]
  20. Rajagopalan T. G., Stein W. H., Moore S. The inactivation of pepsin by diazoacetylnorleucine methyl ester. J Biol Chem. 1966 Sep 25;241(18):4295–4297. [PubMed] [Google Scholar]
  21. Rich D. H., Bernatowicz M. S. Synthesis of analogues of the carboxyl protease inhibitor pepstatin. Effect of structure in subsite P3 on inhibition of pepsin. J Med Chem. 1982 Jul;25(7):791–795. doi: 10.1021/jm00349a005. [DOI] [PubMed] [Google Scholar]
  22. Rich D. H., Sun E. T. Mechanism of inhibition of pepsin by pepstatin. Effect of inhibitor structure on dissociation constant and time-dependent inhibition. Biochem Pharmacol. 1980 Aug 15;29(16):2205–2212. doi: 10.1016/0006-2952(80)90199-9. [DOI] [PubMed] [Google Scholar]
  23. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  24. Somkuti G. A., Babel F. J. Purification and properties of Mucor pusillus acid protease. J Bacteriol. 1968 Apr;95(4):1407–1414. doi: 10.1128/jb.95.4.1407-1414.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tang J., James M. N., Hsu I. N., Jenkins J. A., Blundell T. L. Structural evidence for gene duplication in the evolution of the acid proteases. Nature. 1978 Feb 16;271(5646):618–621. doi: 10.1038/271618a0. [DOI] [PubMed] [Google Scholar]
  26. Valler M. J., Kay J., Aoyagi T., Dunn B. M. The interaction of aspartic proteinases with naturally-occurring inhibitors from actinomycetes and Ascaris lumbricoides. J Enzyme Inhib. 1985;1(1):77–82. doi: 10.3109/14756368509031284. [DOI] [PubMed] [Google Scholar]
  27. Williams D. C., Witaker J. R., Caldwell P. V. Hydrolysis of peptide bonds of the oxidized B-chain of insulin by Endothia parasitica protease. Arch Biochem Biophys. 1972 Mar;149(1):52–61. doi: 10.1016/0003-9861(72)90298-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES