Abstract
Proton extrusion during ferricyanide reduction by NADH-generating substrates or succinate was studied in isolated rat liver mitochondria with the use of optical indicators. NN'-Dicyclohexylcarbodi-imide (DCCD) caused a decrease of 84% in the H+/e- ratio of NADH:cytochrome c reduction, but a decrease of only 49% in that of succinate:cytochrome c reduction, even though electron transfer was decreased equally in both spans. The data indicate that a DCCD-sensitive channel operates in the NADH:ubiquinone oxidoreductase region of the respiratory chain.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Al-Shawi M. K., Brand M. D. Steady-state H+/O stoichiometry of liver mitochondria. Biochem J. 1981 Dec 15;200(3):539–546. doi: 10.1042/bj2000539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Azzi A., Casey R. P., Nałecz M. J. The effect of N,N'-dicyclohexylcarbodiimide on enzymes of bioenergetic relevance. Biochim Biophys Acta. 1984 Dec 17;768(3-4):209–226. doi: 10.1016/0304-4173(84)90017-x. [DOI] [PubMed] [Google Scholar]
- Beattie D. S., Villalobo A. Energy transduction by the reconstituted b-c1 complex from yeast mitochondria. Inhibitory effects of dicyclohexylcarbodiimide. J Biol Chem. 1982 Dec 25;257(24):14745–14752. [PubMed] [Google Scholar]
- Borchart U., Machleidt W., Schägger H., Link T. A., von Jagow G. Isolation and amino acid sequence of the 8 kDa DCCD-binding protein of beef heart ubiquinol:cytochrome c reductase. FEBS Lett. 1985 Oct 21;191(1):125–130. doi: 10.1016/0014-5793(85)81007-3. [DOI] [PubMed] [Google Scholar]
- Brand M. D., Al-Shawi M. K., Brown G. C., Price B. D. Thermodynamic and steady-state-kinetic investigation of the effect of NN'-dicyclohexylcarbodi-imide on H+ translocation by the mitochondrial cytochrome bc1 complex. Biochem J. 1985 Jan 15;225(2):407–411. doi: 10.1042/bj2250407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casey R. P., Thelen M., Azzi A. Dicyclohexylcarbodiimide binds specifically and covalently to cytochrome c oxidase while inhibiting its H+-translocating activity. J Biol Chem. 1980 May 10;255(9):3994–4000. [PubMed] [Google Scholar]
- Casey R. P., Thelen M., Azzi A. Dicyclohexylcarbodiimide inhibits proton translocation by cytochrome c oxidase. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1044–1051. doi: 10.1016/s0006-291x(79)80013-3. [DOI] [PubMed] [Google Scholar]
- Clejan L., Bosch C. G., Beattie D. S. Dicyclohexylcarbodiimide binds to cytochrome b and subunit VIII in soluble complex III from beef heart mitochondria. J Biol Chem. 1984 Sep 25;259(18):11169–11172. [PubMed] [Google Scholar]
- Esposti M. D., Saus J. B., Timoneda J., Bertoli E., Lenaz G. The inhibition of proton translocation in the mitochondrial bc1 region by dicyclohexylcarbodiimide. FEBS Lett. 1982 Oct 4;147(1):101–105. doi: 10.1016/0014-5793(82)81020-x. [DOI] [PubMed] [Google Scholar]
- Freedman J. A., Lemasters J. J. Thermodynamics of reverse electron transfer across site 1: ATP/2e- is greater than one. Biochem Biophys Res Commun. 1984 Nov 30;125(1):8–13. doi: 10.1016/s0006-291x(84)80325-3. [DOI] [PubMed] [Google Scholar]
- Hassinen I., Jämsä T. A reflectance spectrophotometer-surface fluorometer suitable for monitoring changes in hemoprotein spectra and fluorescence of flavins and nicotinamide nucleotides in intact tissues. Anal Biochem. 1982 Mar 1;120(2):365–372. doi: 10.1016/0003-2697(82)90359-1. [DOI] [PubMed] [Google Scholar]
- Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–1069. doi: 10.1146/annurev.bi.54.070185.005055. [DOI] [PubMed] [Google Scholar]
- Krab K., Soos J., Wikström M. The H+/O ratio of proton translocation linked to the oxidation of succinate by mitochondria. FEBS Lett. 1984 Dec 10;178(2):187–192. doi: 10.1016/0014-5793(84)80598-0. [DOI] [PubMed] [Google Scholar]
- Lawford H. G., Garland P. B. Proton translocation coupled to quinone reduction by reduced nicotinamide--adenine dinucleotide in rat liver and ox heart mitochondria. Biochem J. 1972 Dec;130(4):1029–1044. doi: 10.1042/bj1301029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemasters J. J., Grunwald R., Emaus R. K. Thermodynamic limits to the ATP/site stoichiometries of oxidative phosphorylation by rat liver mitochondria. J Biol Chem. 1984 Mar 10;259(5):3058–3063. [PubMed] [Google Scholar]
- Lorusso M., Gatti D., Boffoli D., Bellomo E., Papa S. Redox-linked proton translocation in the b-c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. Studies with chemical modifiers of amino acid residues. Eur J Biochem. 1983 Dec 15;137(3):413–420. doi: 10.1111/j.1432-1033.1983.tb07844.x. [DOI] [PubMed] [Google Scholar]
- Mitchell P., Mitchell R., Moody A. J., West I. C., Baum H., Wrigglesworth J. M. Chemiosmotic coupling in cytochrome oxidase. Possible protonmotive O loop and O cycle mechanisms. FEBS Lett. 1985 Aug 19;188(1):1–7. doi: 10.1016/0014-5793(85)80863-2. [DOI] [PubMed] [Google Scholar]
- Nałecz M. J., Casey R. P., Azzi A. Effects of N, N'-dicyclohexylcarbodiimide on isolated and reconstituted cytochrome b-c1 complex from bovine heart mitochondria. Biochim Biophys Acta. 1983 Jul 29;724(1):75–82. doi: 10.1016/0005-2728(83)90027-0. [DOI] [PubMed] [Google Scholar]
- Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
- Pennington R. M., Fisher R. R. Dicyclohexylcarbodiimide modification of bovine heart mitochondrial transhydrogenase. J Biol Chem. 1981 Sep 10;256(17):8963–8969. [PubMed] [Google Scholar]
- Price B. D., Brand M. D. Chemical modification of the mitochondrial bc1 complex by N,N'-dicyclohexylcarbodiimide inhibits proton translocation. Eur J Biochem. 1983 May 16;132(3):595–601. doi: 10.1111/j.1432-1033.1983.tb07405.x. [DOI] [PubMed] [Google Scholar]
- Ragan C. I., Hinkle P. C. Ion transport and respiratory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids. J Biol Chem. 1975 Nov 10;250(21):8472–8476. [PubMed] [Google Scholar]
- Reynafarje B., Brand M. D., Alexandre A., Lehninger A. L. Determination of the H+/site and Ca2+/site ratios of mitochondrial electron transport. Methods Enzymol. 1979;55:640–656. doi: 10.1016/0076-6879(79)55072-1. [DOI] [PubMed] [Google Scholar]
- Reynafarje B., Lehninger A. L. The K+/site and H+/site stoichiometry of mitochondrial electron transport. J Biol Chem. 1978 Sep 25;253(18):6331–6334. [PubMed] [Google Scholar]
- Wikstrom M. K. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature. 1977 Mar 17;266(5599):271–273. doi: 10.1038/266271a0. [DOI] [PubMed] [Google Scholar]
- Wikström M. K., Berden J. A. Oxidoreduction of cytochrome b in the presence of antimycin. Biochim Biophys Acta. 1972 Dec 14;283(3):403–420. doi: 10.1016/0005-2728(72)90258-7. [DOI] [PubMed] [Google Scholar]
- Wikström M., Krab K., Saraste M. Proton-translocating cytochrome complexes. Annu Rev Biochem. 1981;50:623–655. doi: 10.1146/annurev.bi.50.070181.003203. [DOI] [PubMed] [Google Scholar]
- Wikström M. Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett. 1984 Apr 24;169(2):300–304. doi: 10.1016/0014-5793(84)80338-5. [DOI] [PubMed] [Google Scholar]