Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Aug 1;237(3):927–930. doi: 10.1042/bj2370927

Sensitivity to NN'-dicyclohexylcarbodi-imide of proton translocation by mitochondrial NADH:ubiquinone oxidoreductase.

P J Honkakoski, I E Hassinen
PMCID: PMC1147078  PMID: 3026336

Abstract

Proton extrusion during ferricyanide reduction by NADH-generating substrates or succinate was studied in isolated rat liver mitochondria with the use of optical indicators. NN'-Dicyclohexylcarbodi-imide (DCCD) caused a decrease of 84% in the H+/e- ratio of NADH:cytochrome c reduction, but a decrease of only 49% in that of succinate:cytochrome c reduction, even though electron transfer was decreased equally in both spans. The data indicate that a DCCD-sensitive channel operates in the NADH:ubiquinone oxidoreductase region of the respiratory chain.

Full text

PDF
927

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Shawi M. K., Brand M. D. Steady-state H+/O stoichiometry of liver mitochondria. Biochem J. 1981 Dec 15;200(3):539–546. doi: 10.1042/bj2000539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azzi A., Casey R. P., Nałecz M. J. The effect of N,N'-dicyclohexylcarbodiimide on enzymes of bioenergetic relevance. Biochim Biophys Acta. 1984 Dec 17;768(3-4):209–226. doi: 10.1016/0304-4173(84)90017-x. [DOI] [PubMed] [Google Scholar]
  3. Beattie D. S., Villalobo A. Energy transduction by the reconstituted b-c1 complex from yeast mitochondria. Inhibitory effects of dicyclohexylcarbodiimide. J Biol Chem. 1982 Dec 25;257(24):14745–14752. [PubMed] [Google Scholar]
  4. Borchart U., Machleidt W., Schägger H., Link T. A., von Jagow G. Isolation and amino acid sequence of the 8 kDa DCCD-binding protein of beef heart ubiquinol:cytochrome c reductase. FEBS Lett. 1985 Oct 21;191(1):125–130. doi: 10.1016/0014-5793(85)81007-3. [DOI] [PubMed] [Google Scholar]
  5. Brand M. D., Al-Shawi M. K., Brown G. C., Price B. D. Thermodynamic and steady-state-kinetic investigation of the effect of NN'-dicyclohexylcarbodi-imide on H+ translocation by the mitochondrial cytochrome bc1 complex. Biochem J. 1985 Jan 15;225(2):407–411. doi: 10.1042/bj2250407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Casey R. P., Thelen M., Azzi A. Dicyclohexylcarbodiimide binds specifically and covalently to cytochrome c oxidase while inhibiting its H+-translocating activity. J Biol Chem. 1980 May 10;255(9):3994–4000. [PubMed] [Google Scholar]
  7. Casey R. P., Thelen M., Azzi A. Dicyclohexylcarbodiimide inhibits proton translocation by cytochrome c oxidase. Biochem Biophys Res Commun. 1979 Apr 27;87(4):1044–1051. doi: 10.1016/s0006-291x(79)80013-3. [DOI] [PubMed] [Google Scholar]
  8. Clejan L., Bosch C. G., Beattie D. S. Dicyclohexylcarbodiimide binds to cytochrome b and subunit VIII in soluble complex III from beef heart mitochondria. J Biol Chem. 1984 Sep 25;259(18):11169–11172. [PubMed] [Google Scholar]
  9. Esposti M. D., Saus J. B., Timoneda J., Bertoli E., Lenaz G. The inhibition of proton translocation in the mitochondrial bc1 region by dicyclohexylcarbodiimide. FEBS Lett. 1982 Oct 4;147(1):101–105. doi: 10.1016/0014-5793(82)81020-x. [DOI] [PubMed] [Google Scholar]
  10. Freedman J. A., Lemasters J. J. Thermodynamics of reverse electron transfer across site 1: ATP/2e- is greater than one. Biochem Biophys Res Commun. 1984 Nov 30;125(1):8–13. doi: 10.1016/s0006-291x(84)80325-3. [DOI] [PubMed] [Google Scholar]
  11. Hassinen I., Jämsä T. A reflectance spectrophotometer-surface fluorometer suitable for monitoring changes in hemoprotein spectra and fluorescence of flavins and nicotinamide nucleotides in intact tissues. Anal Biochem. 1982 Mar 1;120(2):365–372. doi: 10.1016/0003-2697(82)90359-1. [DOI] [PubMed] [Google Scholar]
  12. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–1069. doi: 10.1146/annurev.bi.54.070185.005055. [DOI] [PubMed] [Google Scholar]
  13. Krab K., Soos J., Wikström M. The H+/O ratio of proton translocation linked to the oxidation of succinate by mitochondria. FEBS Lett. 1984 Dec 10;178(2):187–192. doi: 10.1016/0014-5793(84)80598-0. [DOI] [PubMed] [Google Scholar]
  14. Lawford H. G., Garland P. B. Proton translocation coupled to quinone reduction by reduced nicotinamide--adenine dinucleotide in rat liver and ox heart mitochondria. Biochem J. 1972 Dec;130(4):1029–1044. doi: 10.1042/bj1301029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lemasters J. J., Grunwald R., Emaus R. K. Thermodynamic limits to the ATP/site stoichiometries of oxidative phosphorylation by rat liver mitochondria. J Biol Chem. 1984 Mar 10;259(5):3058–3063. [PubMed] [Google Scholar]
  16. Lorusso M., Gatti D., Boffoli D., Bellomo E., Papa S. Redox-linked proton translocation in the b-c1 complex from beef-heart mitochondria reconstituted into phospholipid vesicles. Studies with chemical modifiers of amino acid residues. Eur J Biochem. 1983 Dec 15;137(3):413–420. doi: 10.1111/j.1432-1033.1983.tb07844.x. [DOI] [PubMed] [Google Scholar]
  17. Mitchell P., Mitchell R., Moody A. J., West I. C., Baum H., Wrigglesworth J. M. Chemiosmotic coupling in cytochrome oxidase. Possible protonmotive O loop and O cycle mechanisms. FEBS Lett. 1985 Aug 19;188(1):1–7. doi: 10.1016/0014-5793(85)80863-2. [DOI] [PubMed] [Google Scholar]
  18. Nałecz M. J., Casey R. P., Azzi A. Effects of N, N'-dicyclohexylcarbodiimide on isolated and reconstituted cytochrome b-c1 complex from bovine heart mitochondria. Biochim Biophys Acta. 1983 Jul 29;724(1):75–82. doi: 10.1016/0005-2728(83)90027-0. [DOI] [PubMed] [Google Scholar]
  19. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  20. Pennington R. M., Fisher R. R. Dicyclohexylcarbodiimide modification of bovine heart mitochondrial transhydrogenase. J Biol Chem. 1981 Sep 10;256(17):8963–8969. [PubMed] [Google Scholar]
  21. Price B. D., Brand M. D. Chemical modification of the mitochondrial bc1 complex by N,N'-dicyclohexylcarbodiimide inhibits proton translocation. Eur J Biochem. 1983 May 16;132(3):595–601. doi: 10.1111/j.1432-1033.1983.tb07405.x. [DOI] [PubMed] [Google Scholar]
  22. Ragan C. I., Hinkle P. C. Ion transport and respiratory control in vesicles formed from reduced nicotinamide adenine dinucleotide coenzyme Q reductase and phospholipids. J Biol Chem. 1975 Nov 10;250(21):8472–8476. [PubMed] [Google Scholar]
  23. Reynafarje B., Brand M. D., Alexandre A., Lehninger A. L. Determination of the H+/site and Ca2+/site ratios of mitochondrial electron transport. Methods Enzymol. 1979;55:640–656. doi: 10.1016/0076-6879(79)55072-1. [DOI] [PubMed] [Google Scholar]
  24. Reynafarje B., Lehninger A. L. The K+/site and H+/site stoichiometry of mitochondrial electron transport. J Biol Chem. 1978 Sep 25;253(18):6331–6334. [PubMed] [Google Scholar]
  25. Wikstrom M. K. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature. 1977 Mar 17;266(5599):271–273. doi: 10.1038/266271a0. [DOI] [PubMed] [Google Scholar]
  26. Wikström M. K., Berden J. A. Oxidoreduction of cytochrome b in the presence of antimycin. Biochim Biophys Acta. 1972 Dec 14;283(3):403–420. doi: 10.1016/0005-2728(72)90258-7. [DOI] [PubMed] [Google Scholar]
  27. Wikström M., Krab K., Saraste M. Proton-translocating cytochrome complexes. Annu Rev Biochem. 1981;50:623–655. doi: 10.1146/annurev.bi.50.070181.003203. [DOI] [PubMed] [Google Scholar]
  28. Wikström M. Two protons are pumped from the mitochondrial matrix per electron transferred between NADH and ubiquinone. FEBS Lett. 1984 Apr 24;169(2):300–304. doi: 10.1016/0014-5793(84)80338-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES