Abstract
A series of binuclear DNA-binding ligands was prepared by linking two (2,2':6',2"-terpyridine)platinum(II) moieties via alpha omega-dithiols of the type HS-[CH2]n-SH where n = 4-10. A monomeric analogue was also synthesized. Compounds were characterized by elemental analysis and electronic and n.m.r. spectroscopy. Viscometric measurements with sonicated rod-like DNA fragments and covalently closed circular DNA were performed to investigate the mode of binding of these agents. The ligands with n = 5 and 6 function as bis intercalators and form a single 'base-pair sandwich' in violation of neighbour-exclusion binding. Bifunctional reaction occurs for the ligand with n = 7, whereas the ligands with n = 8 and 10 show a preference for mixed monofunctional/bifunctional binding. The data do not permit definitive assignment of the binding mode of the ligands with n = 4 and 9. All compounds are growth-inhibitory against mouse leukaemia L1210 cells in culture with IC50 values in the range 2-14 microM.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chen T. K., Fico R., Canellakis E. S. Diacridines, bifunctional intercalators. Chemistry and antitumor activity. J Med Chem. 1978 Sep;21(9):868–874. doi: 10.1021/jm00207a006. [DOI] [PubMed] [Google Scholar]
- Cohen G., Eisenberg H. Conformation studies on the sodium and cesium salts of calf thymus deoxyribonucleic acid (DNA). Biopolymers. 1966 Apr-May;4(4):429–440. doi: 10.1002/bip.1966.360040404. [DOI] [PubMed] [Google Scholar]
- Crothers D. M. Calculation of binding isotherms for heterogenous polymers. Biopolymers. 1968 Apr;6(4):575–584. doi: 10.1002/bip.1968.360060411. [DOI] [PubMed] [Google Scholar]
- Crothers D. M., Zimm B. H. Viscosity and sedimentation of the DNA from bacteriophages T2 and T7 and the relation to molecular weight. J Mol Biol. 1965 Jul;12(3):525–536. doi: 10.1016/s0022-2836(65)80310-2. [DOI] [PubMed] [Google Scholar]
- Denny W. A., Atwell G. J., Baguley B. C., Wakelin L. P. Potential antitumor agents. 44. Synthesis and antitumor activity of new classes of diacridines: importance of linker chain rigidity for DNA binding kinetics and biological activity. J Med Chem. 1985 Nov;28(11):1568–1574. doi: 10.1021/jm00149a005. [DOI] [PubMed] [Google Scholar]
- Denny W. A., Atwell G. J., Willmott G. A., Wakelin L. P. Interaction of paired homologous series of diacridines and triacridines with deoxyribonucleic acid. Biophys Chem. 1985 Jun;22(1-2):17–26. doi: 10.1016/0301-4622(85)80022-3. [DOI] [PubMed] [Google Scholar]
- Gaugain B., Barbet J., Capelle N., Roques B. P., Le Pecq J. B. DNA Bifunctional intercalators. 2. Fluorescence properties and DNA binding interaction of an ethidium homodimer and an acridine ethidium heterodimer. Biochemistry. 1978 Nov 28;17(24):5078–5088. doi: 10.1021/bi00617a002. [DOI] [PubMed] [Google Scholar]
- Howe-Grant M., Lippard S. J. Binding of platinum(II) intercalation reagents to deoxyribnonucleic acid. Dependence on base-pair composition, nature of the intercalator, and ionic strength. Biochemistry. 1979 Dec 25;18(26):5762–5769. doi: 10.1021/bi00593a003. [DOI] [PubMed] [Google Scholar]
- McFadyen W. D., Wakelin L. P., Roos I. A., Leopold V. A. Activity of platinum(II) intercalating agents against murine leukemia L1210. J Med Chem. 1985 Aug;28(8):1113–1116. doi: 10.1021/jm00146a026. [DOI] [PubMed] [Google Scholar]
- Reinert K. E. DNA stiffening and elongation caused by the binding of ethidium bromide. Biochim Biophys Acta. 1973 Aug 24;319(2):135–139. doi: 10.1016/0005-2787(73)90004-x. [DOI] [PubMed] [Google Scholar]
- Révet B. M., Schmir M., Vinograd J. Direct determination of the superhelix density of closed circular DNA by viscometric titration. Nat New Biol. 1971 Jan 6;229(1):10–13. doi: 10.1038/newbio229010a0. [DOI] [PubMed] [Google Scholar]
- Wakelin L. P., McFadyen W. D., Walpole A., Roos I. A. Interaction of phenylthiolato-(2,2',2"-terpyridine)platinum(II) cation with DNA. Biochem J. 1984 Aug 15;222(1):203–215. doi: 10.1042/bj2220203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wakelin L. P. Polyfunctional DNA intercalating agents. Med Res Rev. 1986 Jul-Sep;6(3):275–340. doi: 10.1002/med.2610060303. [DOI] [PubMed] [Google Scholar]
- Wakelin L. P., Romanos M., Chen T. K., Glaubiger D., Canellakis E. S., Waring M. J. Structural limitations on the bifunctional intercalation of diacridines into DNA. Biochemistry. 1978 Nov 14;17(23):5057–5063. doi: 10.1021/bi00616a031. [DOI] [PubMed] [Google Scholar]
- Wang A. H., Nathans J., van der Marel G., van Boom J. H., Rich A. Molecular structure of a double helical DNA fragment intercalator complex between deoxy CpG and a terpyridine platinum compound. Nature. 1978 Nov 30;276(5687):471–474. doi: 10.1038/276471a0. [DOI] [PubMed] [Google Scholar]
- Wang J. C. The degree of unwinding of the DNA helix by ethidium. I. Titration of twisted PM2 DNA molecules in alkaline cesium chloride density gradients. J Mol Biol. 1974 Nov 15;89(4):783–801. doi: 10.1016/0022-2836(74)90053-9. [DOI] [PubMed] [Google Scholar]
- Wilson W. D., Jones R. L. Intercalating drugs: DNA binding and molecular pharmacology. Adv Pharmacol Chemother. 1981;18:177–222. doi: 10.1016/s1054-3589(08)60255-0. [DOI] [PubMed] [Google Scholar]
- Wright R. G., Wakelin L. P., Fieldes A., Acheson R. M., Waring M. J. Effects of ring substituents and linker chains on the bifunctional intercalation of diacridines into deoxyribonucleic acid. Biochemistry. 1980 Dec 9;19(25):5825–5836. doi: 10.1021/bi00566a026. [DOI] [PubMed] [Google Scholar]
