Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Sep 15;238(3):801–809. doi: 10.1042/bj2380801

Action in vivo and in vitro of 2-tetradecylglycidic acid, 2-tetradecylglycidyl-CoA and 2-tetradecylglycidylcarnitine on hepatic carnitine palmitoyltransferase.

P S Brady, L J Brady
PMCID: PMC1147207  PMID: 3800962

Abstract

The effects of 2-tetradecylglycidic acid (TDGA), TDGA-CoA and TDGA-carnitine were examined in purified hepatic CPT (carnitine palmitoyltransferase) and in hepatic mitochondria and inverted submitochondrial vesicles derived from Sprague-Dawley rats. Since TDGA has been reported as a specific inhibitor of carnitine palmitoyltransferase-A (CPT-A), the focus was on kinetics and inhibition of CPT-A, and the relationship of this key enzyme to beta-oxidation. After administration of TDGA in vivo to overnight-starved rats, the Vmax. of CPT in intact mitochondria and in inverted vesicles (CPT-B) was depressed by 66%. The S0.5 for palmitoyl-CoA and Km for carnitine were unchanged. The I50 (concn. giving 50% inhibition) for malonyl-CoA was significantly increased from 20 to 141 microM in intact mitochondria, but unchanged (199 versus 268 microM) in inverted vesicles. The addition in vitro of TDGA-CoA (0-1.0 microM) gave I50 values of 0.29 and 0.27 microM (S.E.M. = 0.19) in intact mitochondria from fed and 48 h-starved rats, and 0.81 and 1.57 microM (S.E.M. = 0.29) for inverted vesicles derived from fed and starved rats. Addition in vitro of TDGA-carnitine to mitochondria from starved rats yielded an I50 value of 27.7 mM (S.E.M. = 12.2) for L-[methyl-14C]carnitine release from palmitoyl-L-[methyl-14C]carnitine and 0.64 mM (S.E.M. = 0.07) for palmitoyl-L-[methyl-14C]carnitine formation from L-[methyl-14C]carnitine in intact mitochondria. Inverted vesicles were not measurably sensitive to TDGA-carnitine up to 500 microM for the assay of L-[methyl-14C]carnitine release, but were as sensitive as intact mitochondria when inhibition was determined in the direction of palmitoyl-L-[methyl-14C]carnitine formation (I50 = 0.54 +/- 0.07 microM). When TDGA-CoA was added to intact mitochondria, then incubated for 5 min at room temperature and subsequently washed out, Vmax. of CPT decreased from 5.8 to 3.5 (S.E.M. = 0.6) in intact mitochondria, and from 17.2 to 6.3 (S.E.M. = 4.8) in inverted vesicles. The Km for L-carnitine and the S0.5 for palmitoyl-CoA increased 2-fold with TDGA-CoA pretreatment in both intact mitochondria and inverted vesicles. Detergent solubilization (0.05% Triton X-100) resulted in a complete loss of TDGA-CoA sensitivity (up to 1.0 microM measured). Sonicated mitochondria exhibited an I50 of 0.72 +/- 0.03 microM.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergstrom J. D., Reitz R. C. Studies on carnitine palmitoyl transferase: the similar nature of CPTi (inner form) and CPTo (outer form). Arch Biochem Biophys. 1980 Oct 1;204(1):71–79. doi: 10.1016/0003-9861(80)90008-9. [DOI] [PubMed] [Google Scholar]
  2. Bieber L. L., Abraham T., Helmrath T. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem. 1972 Dec;50(2):509–518. doi: 10.1016/0003-2697(72)90061-9. [DOI] [PubMed] [Google Scholar]
  3. Bieber L. L., Fiol C. J. Characterization and properties of carnitine acyltransferases. Biochem Soc Trans. 1986 Aug;14(4):674–676. doi: 10.1042/bst0140674. [DOI] [PubMed] [Google Scholar]
  4. Brady L. J., Hoppel C. L., Brady P. S. Hepatic mitochondrial inner-membrane properties, beta-oxidation and carnitine palmitoyltransferases A and B. Effects of genetic obesity and starvation. Biochem J. 1986 Jan 15;233(2):427–433. doi: 10.1042/bj2330427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brady L. J., Hoppel C. L. Hepatic mitochondrial function in lean and obese Zucker rats. Am J Physiol. 1983 Sep;245(3):E239–E245. doi: 10.1152/ajpendo.1983.245.3.E239. [DOI] [PubMed] [Google Scholar]
  6. Brady L. J., Silverstein L. J., Hoppel C. L., Brady P. S. Hepatic mitochondrial inner membrane properties and carnitine palmitoyltransferase A and B. Effect of diabetes and starvation. Biochem J. 1985 Dec 1;232(2):445–450. doi: 10.1042/bj2320445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brendel K., Bressler R. The resolution of (plus or minus)-carnitine and the synthesis of acylcarnitines. Biochim Biophys Acta. 1967 Feb 14;137(1):98–106. doi: 10.1016/0005-2760(67)90012-4. [DOI] [PubMed] [Google Scholar]
  8. Cederbaum A. I., Lieber C. S., Beattie D. S., Rubin E. Effect of chronic ethanol ingestion on fatty acid oxidation by hepatic mitochondria. J Biol Chem. 1975 Jul 10;250(13):5122–5129. [PubMed] [Google Scholar]
  9. Chase J. F., Tubbs P. K. Specific alkylation of a histidine residue in carnitine acetyltransferase by bromoacetyl-L-carnitine. Biochem J. 1970 Feb;116(4):713–720. doi: 10.1042/bj1160713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen R. F. Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem. 1967 Jan 25;242(2):173–181. [PubMed] [Google Scholar]
  11. Clarke P. R., Bieber L. L. Isolation and purification of mitochondrial carnitine octanoyltransferase activities from beef heart. J Biol Chem. 1981 Oct 10;256(19):9861–9868. [PubMed] [Google Scholar]
  12. Daum G. Lipids of mitochondria. Biochim Biophys Acta. 1985 Jun 12;822(1):1–42. doi: 10.1016/0304-4157(85)90002-4. [DOI] [PubMed] [Google Scholar]
  13. Declercq P. E., Venincasa M. D., Mills S. E., Foster D. W., McGarry J. D. Interaction of malonyl-CoA and 2-tetradecylglycidyl-CoA with mitochondrial carnitine palmitoyltransferase I. J Biol Chem. 1985 Oct 15;260(23):12516–12522. [PubMed] [Google Scholar]
  14. Federer W. T., Zelen M. Analysis of multifactor classifications with unequal numbers of observations. Biometrics. 1966 Sep;22(3):525–552. [PubMed] [Google Scholar]
  15. Fiol C. J., Bieber L. L. Sigmoid kinetics of purified beef heart mitochondrial carnitine palmitoyltransferase. Effect of pH and malonyl-CoA. J Biol Chem. 1984 Nov 10;259(21):13084–13088. [PubMed] [Google Scholar]
  16. Fleischer S., Meissner G., Smigel M., Wood R. Preparation of submitochondrial vesicles using nitrogen decompression. Methods Enzymol. 1974;31:292–299. doi: 10.1016/0076-6879(74)31030-0. [DOI] [PubMed] [Google Scholar]
  17. Garland P. B. Control of citrate synthesis in mitochondria. Biochem Soc Symp. 1968;27:41–60. [PubMed] [Google Scholar]
  18. Godinot C., Gautheron D. C. Separation of right-side-out and inside-out submitochondrial particles by affinity chromatography on Sepharose-cytochrome c. Methods Enzymol. 1979;55:112–114. doi: 10.1016/0076-6879(79)55015-0. [DOI] [PubMed] [Google Scholar]
  19. Hanson R. W., Ballard F. J. Citrate, pyruvate, and lactate contaminants of commercial serum albumin. J Lipid Res. 1968 Sep;9(5):667–668. [PubMed] [Google Scholar]
  20. Hoppel C. L. Carnitine and carnitine palmitoyltransferase in fatty acid oxidation and ketosis. Fed Proc. 1982 Oct;41(12):2853–2857. [PubMed] [Google Scholar]
  21. Hoppel C. L., Tomec R. J. Carnitine palmityltransferase. Location of two enzymatic activities in rat liver mitochondria. J Biol Chem. 1972 Feb 10;247(3):832–841. [PubMed] [Google Scholar]
  22. Kiorpes T. C., Hoerr D., Ho W., Weaner L. E., Inman M. G., Tutwiler G. F. Identification of 2-tetradecylglycidyl coenzyme A as the active form of methyl 2-tetradecylglycidate (methyl palmoxirate) and its characterization as an irreversible, active site-directed inhibitor of carnitine palmitoyltransferase A in isolated rat liver mitochondria. J Biol Chem. 1984 Aug 10;259(15):9750–9755. [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  25. Mills S. E., Foster D. W., McGarry J. D. Effects of pH on the interaction of substrates and malonyl-CoA with mitochondrial carnitine palmitoyltransferase I. Biochem J. 1984 Apr 15;219(2):601–608. doi: 10.1042/bj2190601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Miyazawa S., Ozasa H., Osumi T., Hashimoto T. Purification and properties of carnitine octanoyltransferase and carnitine palmitoyltransferase from rat liver. J Biochem. 1983 Aug;94(2):529–542. doi: 10.1093/oxfordjournals.jbchem.a134384. [DOI] [PubMed] [Google Scholar]
  27. Noël H., Goswami T., Pande S. V. Solubilization and reconstitution of rat liver mitochondrial carnitine acylcarnitine translocase. Biochemistry. 1985 Aug 13;24(17):4504–4509. doi: 10.1021/bi00338a003. [DOI] [PubMed] [Google Scholar]
  28. Turnbull D. M., Bartlett K., Younan S. I., Sherratt H. S. The effects of 2[5(4-chlorophenyl)pentyl]oxirane-2-carbonyl-Co-A on mitochondrial oxidations. Biochem Pharmacol. 1984 Feb 1;33(3):475–481. doi: 10.1016/0006-2952(84)90243-0. [DOI] [PubMed] [Google Scholar]
  29. Tutwiler G. F., Brentzel H. J., Kiorpes T. C. Inhibition of mitochondrial carnitine palmitoyl transferase A in vivo with methyl 2-tetradecylglycidate (methyl palmoxirate) and its relationship to ketonemia and glycemia. Proc Soc Exp Biol Med. 1985 Feb;178(2):288–296. doi: 10.3181/00379727-178-42012. [DOI] [PubMed] [Google Scholar]
  30. Tutwiler G. F., Ho W., Mohrbacher R. J. 2-Tetradecylglycidic acid. Methods Enzymol. 1981;72:533–551. doi: 10.1016/s0076-6879(81)72042-1. [DOI] [PubMed] [Google Scholar]
  31. Tutwiler G. F., Ryzlak M. T. Inhibition of mitochondrial carnitine palmitoyl transferase by 2-tetradecylglycidic acid (McN-3802) (preliminary communication). Life Sci. 1980 Feb 4;26(5):393–397. doi: 10.1016/0024-3205(80)90156-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES