Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Oct 1;239(1):103–108. doi: 10.1042/bj2390103

Study of some factors controlling fatty acid oxidation in liver mitochondria of obese Zucker rats.

P Clouet, C Henninger, J Bézard
PMCID: PMC1147245  PMID: 3800970

Abstract

Livers of genetically obese Zucker rats showed, compared with lean controls, hypertrophy and enrichment in triacylglycerols, indicating that fatty acid metabolism was directed towards lipogenesis and esterification rather than towards fatty acid oxidation. Mitochondrial activities of cytochrome c oxidase and monoamine oxidase were significantly lower when expressed per g wet wt. of liver, whereas peroxisomal activities of urate oxidase and palmitoyl-CoA-dependent NAD+ reduction were unchanged. Liver mitochondria were able to oxidize oleic acid at the same rate in both obese and lean rats. For reactions occurring inside the mitochondria, e.g. octanoate oxidation and palmitoyl-CoA dehydrogenase, no difference was found between both phenotypes. Total carnitine palmitoyl-, octanoyl- and acetyl-transferase activities were slightly higher in mitochondria from obese rats, whereas the carnitine content of both liver tissue and mitochondria was significantly lower in obese rats compared with their lean littermates. The carnitine palmitoyltransferase I activity was slightly higher in liver mitochondria from obese rats, but this enzyme was more sensitive to malonyl-CoA inhibition in obese than in lean rats. The above results strongly suggest that the impaired fatty acid oxidation observed in the whole liver of obese rats is due to the diminished transport of fatty acids across the mitochondrial inner membrane via the carnitine palmitoyltransferase I. This effect could be reinforced by the decreased mitochondrial content per g wet wt. of liver. The depressed fatty acid oxidation may explain in part the lipid infiltration of liver observed in obese Zucker rats.

Full text

PDF
103

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azain M. J., Fukuda N., Chao F. F., Yamamoto M., Ontko J. A. Contributions of fatty acid and sterol synthesis to triglyceride and cholesterol secretion by the perfused rat liver in genetic hyperlipemia and obesity. J Biol Chem. 1985 Jan 10;260(1):174–181. [PubMed] [Google Scholar]
  2. Berge R. K., Farstad M. Dual localization of long-chain acyl-CoA hydrolase in rat liver: one in the microsomes and one in the mitochondrial matrix. Eur J Biochem. 1979 Mar 15;95(1):89–97. doi: 10.1111/j.1432-1033.1979.tb12942.x. [DOI] [PubMed] [Google Scholar]
  3. Bieber L. L., Abraham T., Helmrath T. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem. 1972 Dec;50(2):509–518. doi: 10.1016/0003-2697(72)90061-9. [DOI] [PubMed] [Google Scholar]
  4. Brady P. S., Hoppel C. L. Peroxisomal palmitoyl-CoA oxidation in the Zucker rat. Biochem J. 1983 Jun 15;212(3):891–894. doi: 10.1042/bj2120891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bray G. A. The Zucker-fatty rat: a review. Fed Proc. 1977 Feb;36(2):148–153. [PubMed] [Google Scholar]
  6. Bremer J., Norum K. R. Palmityl-CoA: carnitine O-palmityltransferase in the mitochondrial oxidation of palmityl-CoA. Eur J Biochem. 1967 Jun;1(4):427–433. doi: 10.1007/978-3-662-25813-2_58. [DOI] [PubMed] [Google Scholar]
  7. Bremer J. The effect of fasting on the activity of liver carnitine palmitoyltransferase and its inhibition by malonyl-CoA. Biochim Biophys Acta. 1981 Sep 24;665(3):628–631. doi: 10.1016/0005-2760(81)90282-4. [DOI] [PubMed] [Google Scholar]
  8. Bronfman M., Inestrosa N. C., Leighton F. Fatty acid oxidation by human liver peroxisomes. Biochem Biophys Res Commun. 1979 Jun 13;88(3):1030–1036. doi: 10.1016/0006-291x(79)91512-2. [DOI] [PubMed] [Google Scholar]
  9. Clouet P., Henninger C., Pascal M., Bézard J. High sensitivity of carnitine acyltransferase I to malonyl-CoA inhibition in liver of obese Zucker rats. FEBS Lett. 1985 Mar 25;182(2):331–334. doi: 10.1016/0014-5793(85)80327-6. [DOI] [PubMed] [Google Scholar]
  10. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  11. GOLDMAN P., VAGELOS P. R. The specificity of triglyceride synthesis from diglycerides in chicken adipose tissue. J Biol Chem. 1961 Oct;236:2620–2623. [PubMed] [Google Scholar]
  12. Godbole V., York D. A. Lipogenesis in situ in the genetically obese Zucker fatty rat (fa/fa): role of hyperphagia and hyperinsulinaemia. Diabetologia. 1978 Mar;14(3):191–197. doi: 10.1007/BF00429780. [DOI] [PubMed] [Google Scholar]
  13. Inestrosa N. C., Bronfman M., Leighton F. Detection of peroxisomal fatty acyl-coenzyme A oxidase activity. Biochem J. 1979 Sep 15;182(3):779–788. doi: 10.1042/bj1820779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Korsrud G. O., Conacher H. B., Jarvis G. A., Beare-Rogers J. L. Studies on long chain cis- and trans-acyl-CoA esters and Acyl-CoA dehydrogenase from rat heart mitochondria. Lipids. 1977 Feb;12(2):177–181. doi: 10.1007/BF02533290. [DOI] [PubMed] [Google Scholar]
  15. Labarca C., Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980 Mar 1;102(2):344–352. doi: 10.1016/0003-2697(80)90165-7. [DOI] [PubMed] [Google Scholar]
  16. Lazarow P. B., De Duve C. A fatty acyl-CoA oxidizing system in rat liver peroxisomes; enhancement by clofibrate, a hypolipidemic drug. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2043–2046. doi: 10.1073/pnas.73.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Leighton F., Poole B., Beaufay H., Baudhuin P., Coffey J. W., Fowler S., De Duve C. The large-scale separation of peroxisomes, mitochondria, and lysosomes from the livers of rats injected with triton WR-1339. Improved isolation procedures, automated analysis, biochemical and morphological properties of fractions. J Cell Biol. 1968 May;37(2):482–513. doi: 10.1083/jcb.37.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Malewiak M. I., Griglio S., Le Liepvre X. Relationship between lipogenesis, ketogenesis, and malonyl-CoA content in isolated hepatocytes from the obese Zucker rat adapted to a high-fat diet. Metabolism. 1985 Jul;34(7):604–611. doi: 10.1016/0026-0495(85)90085-x. [DOI] [PubMed] [Google Scholar]
  19. Martin R. J. In vivo lipogenesis and enzyme levels in adipose and liver tissues from pair-fed genetically obese and lean rats. Life Sci. 1974 Apr 16;14(8):1447–1453. doi: 10.1016/0024-3205(74)90155-6. [DOI] [PubMed] [Google Scholar]
  20. McCune S. A., Durant P. J., Jenkins P. A., Harris R. A. Comparative studies on fatty acid synthesis, glycogen metabolism, and gluconeogenesis by hepatocytes isolated from lean and obese Zucker rats. Metabolism. 1981 Dec;30(12):1170–1178. doi: 10.1016/0026-0495(81)90037-8. [DOI] [PubMed] [Google Scholar]
  21. McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
  22. McGarry J. D., Foster D. W. The regulation of ketogenesis from octanoic acid. The role of the tricarboxylic acid cycle and fatty acid synthesis. J Biol Chem. 1971 Feb 25;246(4):1149–1159. [PubMed] [Google Scholar]
  23. McGarry J. D., Mannaerts G. P., Foster D. W. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977 Jul;60(1):265–270. doi: 10.1172/JCI108764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. NASH T. The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J. 1953 Oct;55(3):416–421. doi: 10.1042/bj0550416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nosadini R., Ursini F., Tessari P., Garotti M. C., de Biasi F., Tiengo A. Hormonal and metabolic characteristics of genetically obese Zucker and dietary obese Sprague-Dawley rats. Eur J Clin Invest. 1980 Apr;10(2 Pt 1):113–118. doi: 10.1111/j.1365-2362.1980.tb02069.x. [DOI] [PubMed] [Google Scholar]
  26. Ramsay R. R., Tubbs P. K. The mechanism of fatty acid uptake by heart mitochondria: an acylcarnitine-carnitine exchange. FEBS Lett. 1975 Jun 1;54(1):21–25. doi: 10.1016/0014-5793(75)81059-3. [DOI] [PubMed] [Google Scholar]
  27. Robinson I. N., Zammit V. A. Sensitivity of carnitine acyltransferase I to malonly-CoA inhibition in isolated rat liver mitochondria is quantitatively related to hepatic malonyl-CoA concentration in vivo. Biochem J. 1982 Jul 15;206(1):177–179. doi: 10.1042/bj2060177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saggerson E. D., Carpenter C. A. Effects of fasting and malonyl CoA on the kinetics of carnitine palmitoyltransferase and carnitine octanoyltransferase in intact rat liver mitochondria. FEBS Lett. 1981 Sep 28;132(2):166–168. doi: 10.1016/0014-5793(81)81152-0. [DOI] [PubMed] [Google Scholar]
  29. Schonfeld G., Pfleger B. Overproduction of very low-density lipoproteins by livers of genetically obese rats. Am J Physiol. 1971 May;220(5):1178–1181. doi: 10.1152/ajplegacy.1971.220.5.1178. [DOI] [PubMed] [Google Scholar]
  30. Seccombe D. W., Hahn P., Novak The effect of diet and development on blood levels of free and esterified carnitine in the rat. Biochim Biophys Acta. 1978 Mar 30;528(3):483–489. doi: 10.1016/0005-2760(78)90038-3. [DOI] [PubMed] [Google Scholar]
  31. Sullivan A. C., Triscari J., Spiegel J. E. Metabolic regulation as a control for lipid disorders. II. Influence of (--)-hydroxycitrate on genetically and experimentally induced hypertriglyceridemia in the rat. Am J Clin Nutr. 1977 May;30(5):777–784. doi: 10.1093/ajcn/30.5.777. [DOI] [PubMed] [Google Scholar]
  32. Triscari J., Greenwood M. R., Sullivan A. C. Oxidation and ketogenesis in hepatocytes of lean and obese Zucker rats. Metabolism. 1982 Mar;31(3):223–228. doi: 10.1016/0026-0495(82)90057-9. [DOI] [PubMed] [Google Scholar]
  33. WEISSBACH H., SMITH T. E., DALY J. W., WITKOP B., UDENFRIEND S. A rapid spectrophotometric assay of mono-amine oxidase based on the rate of disappearance of kynuramine. J Biol Chem. 1960 Apr;235:1160–1163. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES