Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Oct 15;239(2):301–310. doi: 10.1042/bj2390301

Charged anaesthetics alter LM-fibroblast plasma-membrane enzymes by selective fluidization of inner or outer membrane leaflets.

W D Sweet, F Schroeder
PMCID: PMC1147281  PMID: 3028369

Abstract

The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5'-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet.

Full text

PDF
301

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeywardena M. Y., Charnock J. S. Modulation of cardiac glycoside inhibition of (Na+ + K+)-ATPase by membrane lipids. Difference between species. Biochim Biophys Acta. 1983 Mar 23;729(1):75–84. doi: 10.1016/0005-2736(83)90457-1. [DOI] [PubMed] [Google Scholar]
  2. Ahrens M. L. Electrostatic control by lipids upon the membrane-bound (Na+ + K+)-ATPase. II. The influence of surface potential upon the activating ion equilibria. Biochim Biophys Acta. 1983 Jul 13;732(1):1–10. doi: 10.1016/0005-2736(83)90180-3. [DOI] [PubMed] [Google Scholar]
  3. Ahrens M. L. Electrostatic control by lipids upon the membrane-bound (Na+ + K+)-ATPase. Biochim Biophys Acta. 1981 Apr 6;642(2):252–266. doi: 10.1016/0005-2736(81)90444-2. [DOI] [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. Bondy B., Remien J. Differential binding of chlorpromazine to human blood cells: application of the hygroscopic desorption method. Life Sci. 1981 Jan 26;28(4):441–449. doi: 10.1016/0024-3205(81)90091-6. [DOI] [PubMed] [Google Scholar]
  6. Conrad M. J., Singer S. J. Evidence for a large internal pressure in biological membranes. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5202–5206. doi: 10.1073/pnas.76.10.5202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conrad M. J., Singer S. J. The solubility of amphipathic molecules in biological membranes and lipid bilayers and its implications for membrane structure. Biochemistry. 1981 Feb 17;20(4):808–818. doi: 10.1021/bi00507a024. [DOI] [PubMed] [Google Scholar]
  8. Deliconstantinos G., Tsakiris S. Differential effect of anionic and cationic drugs on the synaptosome-associated acetylcholinesterase activity of dog brain. Biochem J. 1985 Jul 1;229(1):81–86. doi: 10.1042/bj2290081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dipple I., Gordon L. M., Houslay M. D. The activity of 5'-nucleotidase in liver plasma membranes is affected by the increase in bilayer fluidity achieved by anionic drugs but not by cationic drugs. J Biol Chem. 1982 Feb 25;257(4):1811–1815. [PubMed] [Google Scholar]
  10. Fontaine R. N., Schroeder F. Plasma membrane aminophospholipid distribution in transformed murine fibroblasts. Biochim Biophys Acta. 1979 Nov 16;558(1):1–12. doi: 10.1016/0005-2736(79)90310-9. [DOI] [PubMed] [Google Scholar]
  11. Gaffney B. J., Willingham G. L., Schepp R. S. Synthesis and membrane interactions of spin-label bifunctional reagents. Biochemistry. 1983 Feb 15;22(4):881–892. doi: 10.1021/bi00273a027. [DOI] [PubMed] [Google Scholar]
  12. Gordon L. M., Sauerheber R. D., Esgate J. A., Dipple I., Marchmont R. J., Houslay M. D. The increase in bilayer fluidity of rat liver plasma membranes achieved by the local anesthetic benzyl alcohol affects the activity of intrinsic membrane enzymes. J Biol Chem. 1980 May 25;255(10):4519–4527. [PubMed] [Google Scholar]
  13. Hale J. E., Schroeder F. Asymmetric transbilayer distribution of sterol across plasma membranes determined by fluorescence quenching of dehydroergosterol. Eur J Biochem. 1982 Mar 1;122(3):649–661. doi: 10.1111/j.1432-1033.1982.tb06488.x. [DOI] [PubMed] [Google Scholar]
  14. Houslay M. D., Dipple I., Elliott K. R. Guanosine 5'-triphosphate and guanosine 5'-[beta gamma-imido]triphosphate effect a collision coupling mechanism between the glucagon receptor and catalytic unit of adenylate cyclase. Biochem J. 1980 Mar 15;186(3):649–658. doi: 10.1042/bj1860649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Houslay M. D., Dipple I., Gordon L. M. Phenobarbital selectively modulates the glucagon-stimulated activity of adenylate cyclase by depressing the lipid phase separation occurring in the outer half of the bilayer of liver plasma membranes. Biochem J. 1981 Sep 1;197(3):675–681. doi: 10.1042/bj1970675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Houslay M. D., Dipple I., Rawal S., Sauerheber R. D., Esgate J. A., Gordon L. M. Glucagon-stimulated adenylate cyclase detects a selective perturbation of the inner half of the liver plasma-membrane bilayer achieved by the local anaesthetic prilocaine. Biochem J. 1980 Jul 15;190(1):131–137. doi: 10.1042/bj1900131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Houslay M. D., Ellory J. C., Smith G. A., Hesketh T. R., Stein J. M., Warren G. B., Metcalfe J. C. Exchange of partners in glucagon receptor-adenylate cyclase complexes. Physical evidence for the independent, mobile receptor model. Biochim Biophys Acta. 1977 Jun 2;467(2):208–219. doi: 10.1016/0005-2736(77)90197-3. [DOI] [PubMed] [Google Scholar]
  18. Houslay M. D., Palmer R. W. Changes in the form of Arrhenius plots of the activity of glucagon-stimulated adenylate cyclase and other hamster liver plasma-membrane enzymes occurring on hibernation. Biochem J. 1978 Sep 15;174(3):909–919. doi: 10.1042/bj1740909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Keeffe E. B., Blankenship N. M., Scharschmidt B. F. Alteration of rat liver plasma membrane fluidity and ATPase activity by chlorpromazine hydrochloride and its metabolites. Gastroenterology. 1980 Aug;79(2):222–231. [PubMed] [Google Scholar]
  20. Kier A. B., Schroeder F. Development of metastatic tumors in athymic (nude) mice from LM cells grown in vitro. Transplantation. 1982 Mar;33(3):274–279. doi: 10.1097/00007890-198203000-00013. [DOI] [PubMed] [Google Scholar]
  21. Kim N. K., Yasmineh W. G., Freier E. F., Goldman A. I., Theologides A. Value of alkaline phosphatase, 5'-nucleotidase, gamma-glutamyltransferase, and glutamate dehydrogenase activity measurements (single and combined) in serum in diagnosis of metastasis to the liver. Clin Chem. 1977 Nov;23(11):2034–2038. [PubMed] [Google Scholar]
  22. Kremmer T., Wisher M. H., Evans W. H. The lipid composition of plasma membrane subfractions originating from the three major functional domains of the rat hepatocyte cell surface. Biochim Biophys Acta. 1976 Dec 14;455(3):655–664. doi: 10.1016/0005-2736(76)90039-0. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Lakowicz J. R., Cherek H., Balter A. Correction of timing errors in photomultiplier tubes used in phase-modulation fluorometry. J Biochem Biophys Methods. 1981 Sep;5(3):131–146. doi: 10.1016/0165-022x(81)90012-9. [DOI] [PubMed] [Google Scholar]
  25. Lakowicz J. R., Prendergast F. G., Hogen D. Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers. Quantitation of hindered depolarizing rotations. Biochemistry. 1979 Feb 6;18(3):508–519. doi: 10.1021/bi00570a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lytton J., Lin J. C., Guidotti G. Identification of two molecular forms of (Na+,K+)-ATPase in rat adipocytes. Relation to insulin stimulation of the enzyme. J Biol Chem. 1985 Jan 25;260(2):1177–1184. [PubMed] [Google Scholar]
  27. Op den Kamp J. A. Lipid asymmetry in membranes. Annu Rev Biochem. 1979;48:47–71. doi: 10.1146/annurev.bi.48.070179.000403. [DOI] [PubMed] [Google Scholar]
  28. Riordan J. R. Ordering of bulk membrane lipid or protein promotes activity of plasma membrane Mg2+ATPase. Can J Biochem. 1980 Oct;58(10):928–934. doi: 10.1139/o80-127. [DOI] [PubMed] [Google Scholar]
  29. Salesse R., Garnier J., Daveloose D. Modulation of adenylate cyclase activity by the physical state of pigeon erythrocyte membrane. 2. Fluidity-controlled coupling between the subunits of the adenylate cyclase system. Biochemistry. 1982 Mar 30;21(7):1587–1590. doi: 10.1021/bi00536a019. [DOI] [PubMed] [Google Scholar]
  30. Salesse R., Garnier J., Leterrier F., Daveloose D., Viret J. Modulation of adenylate cyclase activity by the physical state of pigeon erythrocyte membrane. 1. Parallel drug-induced changes in the bilayer fluidity and adenylate cyclase activity. Biochemistry. 1982 Mar 30;21(7):1581–1586. doi: 10.1021/bi00536a018. [DOI] [PubMed] [Google Scholar]
  31. Schimmel S. D., Kent C., Bischoff R., Vagelos P. R. Plasma membranes from cultured muscle cells: isolation procedure and separation of putative plasma-membrane marker enzymes. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3195–3199. doi: 10.1073/pnas.70.11.3195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schlieper P., Steiner R. Drug-induced surface potential changes of lipid vesicles and the role of calcium. Biochem Pharmacol. 1983 Mar 1;32(5):799–804. doi: 10.1016/0006-2952(83)90579-8. [DOI] [PubMed] [Google Scholar]
  33. Schroeder F. Differences in fluidity between bilayer halves of tumour cell plasma membranes. Nature. 1978 Nov 30;276(5687):528–530. doi: 10.1038/276528a0. [DOI] [PubMed] [Google Scholar]
  34. Schroeder F. Fluorescence probes as monitors of surface membrane fluidity gradients in murine fibroblasts. Eur J Biochem. 1980 Nov;112(2):293–307. doi: 10.1111/j.1432-1033.1980.tb07205.x. [DOI] [PubMed] [Google Scholar]
  35. Schroeder F. Fluorescence probes unravel asymmetric structure of membranes. Subcell Biochem. 1985;11:51–101. doi: 10.1007/978-1-4899-1698-3_2. [DOI] [PubMed] [Google Scholar]
  36. Schroeder F., Fontaine R. N., Kinden D. A. LM fibroblast plasma membrane subfractionation by affinity chromatography on con A-sepharose. Biochim Biophys Acta. 1982 Sep 9;690(2):231–242. doi: 10.1016/0005-2736(82)90327-3. [DOI] [PubMed] [Google Scholar]
  37. Schroeder F., Gardiner J. M. Membrane lipids and enzymes of cultured high- and low-metastatic B16 melanoma variants. Cancer Res. 1984 Aug;44(8):3262–3269. [PubMed] [Google Scholar]
  38. Schroeder F., Goetz I., Roberts E. Sex and age alter plasma membranes of cultured fibroblasts. Eur J Biochem. 1984 Jul 2;142(1):183–191. doi: 10.1111/j.1432-1033.1984.tb08268.x. [DOI] [PubMed] [Google Scholar]
  39. Schroeder F. Lipid domains in plasma membranes from rat liver. Eur J Biochem. 1983 May 16;132(3):509–516. doi: 10.1111/j.1432-1033.1983.tb07391.x. [DOI] [PubMed] [Google Scholar]
  40. Schroeder F., Perlmutter J. F., Glaser M., Vagelos P. R. Isolation and characterization of subcellular membranes with altered phospholipid composition from cultured fibroblasts. J Biol Chem. 1976 Aug 25;251(16):5015–5026. [PubMed] [Google Scholar]
  41. Sessions A., Horwitz A. F. Myoblast aminophospholipid asymmetry differs from that of fibroblasts. FEBS Lett. 1981 Nov 2;134(1):75–78. doi: 10.1016/0014-5793(81)80554-6. [DOI] [PubMed] [Google Scholar]
  42. Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457–4461. doi: 10.1073/pnas.71.11.4457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sinensky M., Minneman K. P., Molinoff P. B. Increased membrane acyl chain ordering activates adenylate cyclase. J Biol Chem. 1979 Sep 25;254(18):9135–9141. [PubMed] [Google Scholar]
  44. Sklar L. A., Doody M. C. Differences in fluidity between bilayer halves of plasma cell membranes. Nature. 1980 Sep 18;287(5779):255–256. doi: 10.1038/287255b0. [DOI] [PubMed] [Google Scholar]
  45. Sweadner K. J. Two molecular forms of (Na+ + K+)-stimulated ATPase in brain. Separation, and difference in affinity for strophanthidin. J Biol Chem. 1979 Jul 10;254(13):6060–6067. [PubMed] [Google Scholar]
  46. Swislocki N. I., Tierney J. Activation of solubilized liver membrane adenylate cyclase by guanyl nucleotides. Arch Biochem Biophys. 1975 Jun;168(2):455–462. doi: 10.1016/0003-9861(75)90275-1. [DOI] [PubMed] [Google Scholar]
  47. Träuble H., Eibl H. Electrostatic effects on lipid phase transitions: membrane structure and ionic environment. Proc Natl Acad Sci U S A. 1974 Jan;71(1):214–219. doi: 10.1073/pnas.71.1.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Whetton A. D., Gordon L. M., Houslay M. D. Adenylate cyclase is inhibited upon depletion of plasma-membrane cholesterol. Biochem J. 1983 May 15;212(2):331–338. doi: 10.1042/bj2120331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zwaal R. F., Roelofsen B., Colley C. M. Localization of red cell membrane constituents. Biochim Biophys Acta. 1973 Sep 10;300(2):159–182. doi: 10.1016/0304-4157(73)90003-8. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES