Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Nov 15;240(1):239–245. doi: 10.1042/bj2400239

Oxidative radioiodination damage to human lactoferrin.

A Rosenmund, C Kuyas, A Haeberli
PMCID: PMC1147399  PMID: 3827843

Abstract

Oxidative iodination of human lactoferrin (Lf) as commonly performed by using the chloramine-T, the Iodogen or the lactoperoxidase method produces an unreliable tracer protein because of excessive and heterogeneous polymer formation. Before iodination a minor tetramer fraction may be demonstrable in iron-saturated Lf only. Iodination-induced polymerization of iron-poor as well as iron-saturated Lf occurs independently of the presence or absence of 10 mM-EDTA and the 125I-/Lf molar ratio used for iodination. 125I-Lf polymers are mainly covalently linked, as suggested by the lack of substantial dissociation in SDS/polyacrylamide-gel electrophoresis. Damage to the 125I-Lf monomer may be another consequence of oxidative iodination. This is demonstrated in SDS/polyacrylamide-gel electrophoresis where 50% of the radioactivity of apparently normal monomer (Mr 75,000) is displaced to a lower-Mr region (30,000-67,000) after reduction with dithiothreitol. Non-oxidative iodination by the Bolton-Hunter technique produces an antigenetically stable tracer that is not being subjected to polymerization and monomer degradation as judged by high-performance gel chromatography and SDS/polyacrylamide-gel electrophoresis with and without dithiothreitol treatment. It is concluded that oxidation in itself leads to covalent non-disulphide cross-linking between human Lf molecules and, possibly, to intramolecular peptide-bond breaking becoming unmasked under reducing conditions. In biological experiments with human 125I-Lf this problem should be carefully considered.

Full text

PDF
239

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aeschbach R., Amadò R., Neukom H. Formation of dityrosine cross-links in proteins by oxidation of tyrosine residues. Biochim Biophys Acta. 1976 Aug 9;439(2):292–301. doi: 10.1016/0005-2795(76)90064-7. [DOI] [PubMed] [Google Scholar]
  2. Alexander N. M. Oxidative cleavage of tryptophanyl peptide bonds during chemical- and peroxidase-catalyzed iodinations. J Biol Chem. 1974 Mar 25;249(6):1946–1952. [PubMed] [Google Scholar]
  3. Ambruso D. R., Johnston R. B., Jr Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system. J Clin Invest. 1981 Feb;67(2):352–360. doi: 10.1172/JCI110042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bagby G. C., Jr, Bennett R. M. Feedback regulation of granulopoiesis: polymerization of lactoferrin abrogates its ability to inhibit CSA production. Blood. 1982 Jul;60(1):108–112. [PubMed] [Google Scholar]
  5. Bagby G. C., Jr, Rigas V. D., Bennett R. M., Vandenbark A. A., Garewal H. S. Interaction of lactoferrin, monocytes, and T lymphocyte subsets in the regulation of steady-state granulopoiesis in vitro. J Clin Invest. 1981 Jul;68(1):56–63. doi: 10.1172/JCI110254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett R. M., Bagby G. C., Davis J. Calcium-dependent polymerization of lactoferrin. Biochem Biophys Res Commun. 1981 Jul 16;101(1):88–95. doi: 10.1016/s0006-291x(81)80014-9. [DOI] [PubMed] [Google Scholar]
  7. Bennett R. M., Davis J., Campbell S., Portnoff S. Lactoferrin binds to cell membrane DNA. Association of surface DNA with an enriched population of B cells and monocytes. J Clin Invest. 1983 Mar;71(3):611–618. doi: 10.1172/JCI110807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bennett R. M., Kokocinski T. Lactoferrin turnover in man. Clin Sci (Lond) 1979 Nov;57(5):453–460. doi: 10.1042/cs0570453. [DOI] [PubMed] [Google Scholar]
  9. Bennett R. M., Mohla C. A solid-phase radioimmunoassay for the measurement of lactoferrin in human plasma: variations with age, sex, and disease. J Lab Clin Med. 1976 Jul;88(1):156–166. [PubMed] [Google Scholar]
  10. Birgens H. S., Hansen N. E., Karle H., Kristensen L. O. Receptor binding of lactoferrin by human monocytes. Br J Haematol. 1983 Jul;54(3):383–391. doi: 10.1111/j.1365-2141.1983.tb02113.x. [DOI] [PubMed] [Google Scholar]
  11. Bläckberg L., Hernell O. Isolation of lactoferrin from human whey by a single chromatographic step. FEBS Lett. 1980 Jan 14;109(2):180–183. doi: 10.1016/0014-5793(80)81081-7. [DOI] [PubMed] [Google Scholar]
  12. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bolton A. E., Lee-Own V., McLean R. K., Challand G. S. Three different radioiodination methods for human spleen ferritin compared. Clin Chem. 1979 Oct;25(10):1826–1830. [PubMed] [Google Scholar]
  14. Boxer L. A., Coates T. D., Haak R. A., Wolach J. B., Hoffstein S., Baehner R. L. Lactoferrin deficiency associated with altered granulocyte function. N Engl J Med. 1982 Aug 12;307(7):404–410. doi: 10.1056/NEJM198208123070704. [DOI] [PubMed] [Google Scholar]
  15. Broxmeyer H. E., Gentile P., Bognacki J., Ralph P. Lactoferrin, transferrin and acidic isoferritins: regulatory molecules with potential therapeutic value in leukemia. Blood Cells. 1983;9(1):83–105. [PubMed] [Google Scholar]
  16. Broxmeyer H. E. Lactoferrin acts on Ia-like antigen-positive subpopulations of human monocytes to inhibit production of colony stimulatory activity in vitro. J Clin Invest. 1979 Dec;64(6):1717–1720. doi: 10.1172/JCI109635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Burgett M. W., Fairfield S. J., Monthony J. F. A solid phase fluorescent immunossay for the quantitation of the C4 component of human complement. J Immunol Methods. 1977;16(3):211–219. doi: 10.1016/0022-1759(77)90199-5. [DOI] [PubMed] [Google Scholar]
  18. Comens P. G., Simmer R. L., Baker J. B. Direct linkage of 125I-EGF to cell surface receptors. A useful artifact of chloramine-T treatment. J Biol Chem. 1982 Jan 10;257(1):42–45. [PubMed] [Google Scholar]
  19. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  20. Hansen N. E., Malmquist J., Thorell J. Plasma myeloperoxidase and lactoferrin measured by radioimmunoassay: relations to neutrophil kinetics. Acta Med Scand. 1975 Dec;198(6):437–443. doi: 10.1111/j.0954-6820.1975.tb19572.x. [DOI] [PubMed] [Google Scholar]
  21. Hekman A. Association of lactoferrin with other proteins, as demonstrated by changes in electrophoretic mobility. Biochim Biophys Acta. 1971 Dec 28;251(3):380–387. doi: 10.1016/0005-2795(71)90126-7. [DOI] [PubMed] [Google Scholar]
  22. Huwiler M., Bürgi U., Kohler H. Mechanism of enzymatic and non-enzymatic tyrosine iodination. Inhibition by excess hydrogen peroxide and/or iodide. Eur J Biochem. 1985 Mar 15;147(3):469–476. doi: 10.1111/j.0014-2956.1985.00469.x. [DOI] [PubMed] [Google Scholar]
  23. Imber M. J., Pizzo S. V. Clearance and binding of native and defucosylated lactoferrin. Biochem J. 1983 May 15;212(2):249–257. doi: 10.1042/bj2120249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Junek H., Kirk K. L., Cohen L. A. The oxidative cleavage of tyrosyl-peptide bonds during iodination. Biochemistry. 1969 May;8(5):1844–1848. doi: 10.1021/bi00833a010. [DOI] [PubMed] [Google Scholar]
  25. Karle H., Hansen N. E., Malmquist J., Karle A. K., Larsson I. Turnover of human lactoferrin in the rabbit. Scand J Haematol. 1979 Oct;23(4):303–312. doi: 10.1111/j.1600-0609.1979.tb02865.x. [DOI] [PubMed] [Google Scholar]
  26. Keough D. T., Dionysius D. A., de Jersey J., Zerner B. Iron-containing acid phosphatases: characterization of the metal-ion binding site of the enzyme from pig allantoic fluid. Biochem Biophys Res Commun. 1980 May 30;94(2):600–605. doi: 10.1016/0006-291x(80)91274-7. [DOI] [PubMed] [Google Scholar]
  27. McCarthy R. C., Markowitz H. Characterization of human prostatic acid phosphatase radioiodinated by four different procedures. Clin Chim Acta. 1983 Aug 31;132(3):277–286. doi: 10.1016/0009-8981(83)90006-2. [DOI] [PubMed] [Google Scholar]
  28. Rümke P., Visser D., Kwa H. G., Hart A. A. Radio-immuno assay of lactoferrin in blood plasma of breast cancer patients, lactating and normal women; prevention of false high levels caused by leakage from neutrophile leucocytes in vitro. Folia Med Neerl. 1971 Aug-Sep;14(4):156–168. [PubMed] [Google Scholar]
  29. Salacinski P. R., McLean C., Sykes J. E., Clement-Jones V. V., Lowry P. J. Iodination of proteins, glycoproteins, and peptides using a solid-phase oxidizing agent, 1,3,4,6-tetrachloro-3 alpha,6 alpha-diphenyl glycoluril (Iodogen). Anal Biochem. 1981 Oct;117(1):136–146. doi: 10.1016/0003-2697(81)90703-x. [DOI] [PubMed] [Google Scholar]
  30. Sturgeon C. M., Beynon L., Seth J., Chisholm G. D. Comparison of Bolton-Hunter and chloramine-T techniques for the radioiodination of prostatic acid phosphatase. Ann Clin Biochem. 1983 Mar;20(Pt 2):112–115. doi: 10.1177/000456328302000210. [DOI] [PubMed] [Google Scholar]
  31. Van Snick J. L., Masson P. L., Heremans J. F. The involvement of lactoferrin in the hyposideremia of acute inflammation. J Exp Med. 1974 Oct 1;140(4):1068–1084. doi: 10.1084/jem.140.4.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Van Snick J. L., Masson P. L. The binding of human lactoferrin to mouse peritoneal cells. J Exp Med. 1976 Dec 1;144(6):1568–1580. doi: 10.1084/jem.144.6.1568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wood W. G., Wachter C., Scriba P. C. Experiences using chloramine-T and 1, 3, 4, 6-tetrachloro-3 alpha, 6 alpha-diphenylglycoluril (Iodogen) for radioiodination of materials for radioimmunoassay. J Clin Chem Clin Biochem. 1981 Oct;19(10):1051–1056. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES