Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Dec 1;240(2):413–422. doi: 10.1042/bj2400413

Purification and properties of an oestrogen-stimulated mouse uterine glycoprotein (approx. 70 kDa).

C T Teng, M P Walker, S N Bhattacharyya, D G Klapper, R P DiAugustine, J A McLachlan
PMCID: PMC1147433  PMID: 3814091

Abstract

An oestrogen-induced secretory protein from mouse uterine luminal fluid was purified by CM-Affi-Gel Blue chromatography and reverse-phase h.p.l.c. This protein has an apparent molecular mass of approx. 70 kDa both by SDS/polyacrylamide-gel electrophoresis (with or without 2-mercaptoethanol) and by gel-filtration column chromatography, indicating that it exists as a single-chain polypeptide. Further analysis of the protein revealed that it is highly basic (pI greater than or equal to 10) and is a glycoprotein. The N-terminus appears to be blocked to Edman degradation. The partial amino acid sequence of a fragment was obtained by cleavage with CNBr; no sequence homology was apparent between the analysed fragment and other known sequences. The incorporation of [35S]methionine into uterine proteins in vitro revealed that oestrogen treatment of immature mice stimulates both synthesis and secretion of the 70 kDa protein. An enzyme-linked immunosorbent assay with polyclonal antibody was used to determine the tissue distribution of the protein. Tissues such as lung, brain, spleen, muscle, intestine, liver, kidney and ovary of oestrogen-treated mice did not have detectable amounts of the 70 kDa protein. Immunoreactivity was present in uterine and vaginal tissues from oestrogen-treated animals. The 70 kDa protein was not induced by testosterone or progesterone. Although the function of this protein is unknown, it is useful as a marker for the study of oestrogen action in the mammalian uterus as well as regulation of gene expression at the molecular level.

Full text

PDF
413

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMINOFF D. Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids. Biochem J. 1961 Nov;81:384–392. doi: 10.1042/bj0810384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aitken R. J. Changes in the protein content of mouse uterine flushings during normal pregnancy and delayed implantation, and after ovariectomy and oestradiol administration. J Reprod Fertil. 1977 May;50(1):29–36. doi: 10.1530/jrf.0.0500029. [DOI] [PubMed] [Google Scholar]
  3. Bhattacharyya S. N., Lynn W. S., Dabrowski J., Trauner K., Hull W. E. Structure elucidation by one- and two-dimensional 360- and 500-MHz 1H NMR of the oligosaccharide units of two glycoproteins isolated from alveoli of patients with alveolar proteinosis. Arch Biochem Biophys. 1984 May 15;231(1):72–85. doi: 10.1016/0003-9861(84)90364-3. [DOI] [PubMed] [Google Scholar]
  4. Burkhart J. G., Benziger J., Svensson K., Malling H. V. An evaluation of heterologous antibodies to lactate dehydrogenase-C in the detection of mutations. Mutat Res. 1985 Jan-Feb;148(1-2):135–149. doi: 10.1016/0027-5107(85)90217-9. [DOI] [PubMed] [Google Scholar]
  5. Chandler V. L., Maler B. A., Yamamoto K. R. DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell. 1983 Jun;33(2):489–499. doi: 10.1016/0092-8674(83)90430-0. [DOI] [PubMed] [Google Scholar]
  6. Compton J. G., Schrader W. T., O'Malley B. W. DNA sequence preference of the progesterone receptor. Proc Natl Acad Sci U S A. 1983 Jan;80(1):16–20. doi: 10.1073/pnas.80.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dutt A., Tang J. P., Welply J. K., Carson D. D. Regulation of N-linked glycoprotein assembly in uteri by steroid hormones. Endocrinology. 1986 Feb;118(2):661–673. doi: 10.1210/endo-118-2-661. [DOI] [PubMed] [Google Scholar]
  8. Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980;70(A):419–439. doi: 10.1016/s0076-6879(80)70067-8. [DOI] [PubMed] [Google Scholar]
  9. Fazleabas A. T., Mead R. A., Rourke A. W., Roberts R. M. Presence of an inhibitor of plasminogen activator in uterine fluid of the western spotted skunk during delayed implantation. Biol Reprod. 1984 Mar;30(2):311–322. doi: 10.1095/biolreprod30.2.311. [DOI] [PubMed] [Google Scholar]
  10. Finlay T. H., Katz J., Levitz M. Purification and properties of an estrogen-stimulated hydrolase from mouse uterus. J Biol Chem. 1982 Sep 25;257(18):10914–10919. [PubMed] [Google Scholar]
  11. Fishel S. B. Analysis of mouse uterine proteins at pro-oestrus, during early pregnancy and after administration of exogenous steroids. J Reprod Fertil. 1979 Jan;55(1):91–100. doi: 10.1530/jrf.0.0550091. [DOI] [PubMed] [Google Scholar]
  12. Geisse S., Scheidereit C., Westphal H. M., Hynes N. E., Groner B., Beato M. Glucocorticoid receptors recognize DNA sequences in and around murine mammary tumour virus DNA. EMBO J. 1982;1(12):1613–1619. doi: 10.1002/j.1460-2075.1982.tb01363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Govindan M. V., Spiess E., Majors J. Purified glucocorticoid receptor-hormone complex from rat liver cytosol binds specifically to cloned mouse mammary tumor virus long terminal repeats in vitro. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5157–5161. doi: 10.1073/pnas.79.17.5157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hancock K., Tsang V. C. India ink staining of proteins on nitrocellulose paper. Anal Biochem. 1983 Aug;133(1):157–162. doi: 10.1016/0003-2697(83)90237-3. [DOI] [PubMed] [Google Scholar]
  15. Heussen C., Dowdle E. B. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 1980 Feb;102(1):196–202. doi: 10.1016/0003-2697(80)90338-3. [DOI] [PubMed] [Google Scholar]
  16. Hirsch P. J., Fergusson I. L., King R. J. Protein composition of human endometrium and its secretion at different stages of the menstrual cycle. Ann N Y Acad Sci. 1977 Mar 11;286:233–248. doi: 10.1111/j.1749-6632.1977.tb29420.x. [DOI] [PubMed] [Google Scholar]
  17. Horwitz K. B., McGuire W. L. Nuclear mechanisms of estrogen action. Effects of estradiol and anti-estrogens on estrogen receptors and nuclear receptor processing. J Biol Chem. 1978 Nov 25;253(22):8185–8191. [PubMed] [Google Scholar]
  18. Kassis J. A., Sakai D., Walent J. H., Gorski J. Primary cultures of estrogen-responsive cells from rat uteri: induction of progesterone receptors and a secreted protein. Endocrinology. 1984 May;114(5):1558–1566. doi: 10.1210/endo-114-5-1558. [DOI] [PubMed] [Google Scholar]
  19. Katz J., Finlay T. H., Tom C., Levitz M. A new hormone-response hydrolase activity in the mouse uterus. Endocrinology. 1980 Dec;107(6):1725–1730. doi: 10.1210/endo-107-6-1725. [DOI] [PubMed] [Google Scholar]
  20. Kneifel M. A., Leytus S. P., Fletcher E., Weber T., Mangel W. F., Katzenellenbogen B. S. Uterine plasminogen activator activity: modulation by steroid hormones. Endocrinology. 1982 Aug;111(2):493–499. doi: 10.1210/endo-111-2-493. [DOI] [PubMed] [Google Scholar]
  21. Komm B. S., Keeping H. S., Sabogal G., Lyttle C. R. Comparison of media proteins from ovariectomized rat uteri following estrogen treatment. Biol Reprod. 1985 Mar;32(2):443–450. doi: 10.1095/biolreprod32.2.443. [DOI] [PubMed] [Google Scholar]
  22. Korach K. S., Harris S. E., Carter D. B. Uterine proteins influenced by estrogen exposure. Analysis by two-dimensional gel electrophoresis. Mol Cell Endocrinol. 1981 Mar;21(3):243–254. doi: 10.1016/0303-7207(81)90018-6. [DOI] [PubMed] [Google Scholar]
  23. Kornfeld R., Kornfeld S. Comparative aspects of glycoprotein structure. Annu Rev Biochem. 1976;45:217–237. doi: 10.1146/annurev.bi.45.070176.001245. [DOI] [PubMed] [Google Scholar]
  24. Kuivanen P. C., DeSombre E. R. The effects of sequential administration of 17 beta-estradiol on the synthesis and secretion of specific proteins in the immature rat uterus. J Steroid Biochem. 1985 Apr;22(4):439–451. doi: 10.1016/0022-4731(85)90161-x. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Leland F. E., Kohn D. F., Sirbasku D. A. Effect of estrogen-promoted bacterial infections of the rat uterus on bioassay of mammalian cell growth factor activities in uterine luminal fluid. Biol Reprod. 1983 Jun;28(5):1243–1255. doi: 10.1095/biolreprod28.5.1243. [DOI] [PubMed] [Google Scholar]
  28. Lyttle C. R., DeSombre E. R. Generality of oestrogen stimulation of peroxidase activity in growth responsive tissues. Nature. 1977 Jul 28;268(5618):337–339. doi: 10.1038/268337a0. [DOI] [PubMed] [Google Scholar]
  29. Lyttle C. R., DeSombre E. R. Uterine peroxidase as a marker for estrogen action. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3162–3166. doi: 10.1073/pnas.74.8.3162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maier D. B., Newbold R. R., McLachlan J. A. Prenatal diethylstilbestrol exposure alters murine uterine responses to prepubertal estrogen stimulation. Endocrinology. 1985 May;116(5):1878–1886. doi: 10.1210/endo-116-5-1878. [DOI] [PubMed] [Google Scholar]
  31. Maurer R. A., Gorski J. Effects of estradiol-17beta and pimozide on prolactin synthesis in male and female rats. Endocrinology. 1977 Jul;101(1):76–84. doi: 10.1210/endo-101-1-76. [DOI] [PubMed] [Google Scholar]
  32. McKnight G. S. The induction of ovalbumin and conalbumin mRNA by estrogen and progesterone in chick oviduct explant cultures. Cell. 1978 Jun;14(2):403–413. doi: 10.1016/0092-8674(78)90125-3. [DOI] [PubMed] [Google Scholar]
  33. McLachlan J. A., Newbold R. R., Bullock B. C. Long-term effects on the female mouse genital tract associated with prenatal exposure to diethylstilbestrol. Cancer Res. 1980 Nov;40(11):3988–3999. [PubMed] [Google Scholar]
  34. Mohapatra N., Lynn W. S., Bhattacharyya S. N. Characterization of a glycoprotein isolated from a continuous tumor-cell line of human lung carcinoma. Biochim Biophys Acta. 1983 Nov 8;760(3):398–402. doi: 10.1016/0304-4165(83)90380-x. [DOI] [PubMed] [Google Scholar]
  35. Newbold R. R., Carter D. B., Harris S. E., McLachlan J. A. Molecular differentiation of the mouse genital tract: altered protein synthesis following prenatal exposure to diethylstilbestrol. Biol Reprod. 1984 Mar;30(2):459–470. doi: 10.1095/biolreprod30.2.459. [DOI] [PubMed] [Google Scholar]
  36. Nieto A., Ponstingl H., Beato M. Purification and quaternary structure of the hormonally induced protein uteroglobin. Arch Biochem Biophys. 1977 Apr 15;180(1):82–92. doi: 10.1016/0003-9861(77)90011-x. [DOI] [PubMed] [Google Scholar]
  37. Notides A., Gorski J. Estrogen-induced synthesis of a specific uterine protein. Proc Natl Acad Sci U S A. 1966 Jul;56(1):230–235. doi: 10.1073/pnas.56.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. O'Malley B. W., Means A. R. Female steroid hormones and target cell nuclei. Science. 1974 Feb 15;183(4125):610–620. doi: 10.1126/science.183.4125.610. [DOI] [PubMed] [Google Scholar]
  39. Oliphant G., Bowling A., Eng L. A., Keen S., Randall P. A. The permeability of rabbit oviduct to proteins present in the serum. Biol Reprod. 1978 Apr;18(3):516–520. doi: 10.1095/biolreprod18.3.516. [DOI] [PubMed] [Google Scholar]
  40. Palmiter R. D., Moore P. B., Mulvihill E. R. A significant lag in the induction of ovalbumin messenger RNA by steroid hormones: a receptor translocation hypothesis. Cell. 1976 Aug;8(4):557–572. doi: 10.1016/0092-8674(76)90224-5. [DOI] [PubMed] [Google Scholar]
  41. Payvar F., Firestone G. L., Ross S. R., Chandler V. L., Wrange O., Carlstedt-Duke J., Gustafsson J. A., Yamamoto K. R. Multiple specific binding sites for purified glucocorticoid receptors on mammary tumor virus DNA. J Cell Biochem. 1982;19(3):241–247. doi: 10.1002/jcb.240190305. [DOI] [PubMed] [Google Scholar]
  42. Peltz S. W., Katzenellenbogen B. S., Kneifel M. A., Mangel W. F. Plasminogen activators in tissues of the immature and estrogen-stimulated rat uterus and in uterine luminal fluid: characterization and properties. Endocrinology. 1983 Mar;112(3):890–897. doi: 10.1210/endo-112-3-890. [DOI] [PubMed] [Google Scholar]
  43. Pinsker M. C., Sacco A. G., Mintz B. Implantation-associated proteinase in mouse uterine fluid. Dev Biol. 1974 Jun;38(2):285–290. doi: 10.1016/0012-1606(74)90007-4. [DOI] [PubMed] [Google Scholar]
  44. Surani M. A. Radiolabelled rat uterine luminal proteins and their regulation by oestradiol and progesterone. J Reprod Fertil. 1977 Jul;50(2):289–296. doi: 10.1530/jrf.0.0500289. [DOI] [PubMed] [Google Scholar]
  45. Sylvan P. E., Maclaughlin D. T., Richardson G. S., Scully R. E., Nikrui N. Human uterine luminal fluid proteins associated with secretory phase endometrium: progesterone-induced products? Biol Reprod. 1981 Mar;24(2):423–429. doi: 10.1095/biolreprod24.2.423. [DOI] [PubMed] [Google Scholar]
  46. Teng C. S., Teng C. T. Decreased ovalbumin-gene response to oestrogen in the prenatally diethylstilboestrol-exposed chick oviduct. Biochem J. 1985 Jun 15;228(3):689–695. doi: 10.1042/bj2280689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Voss H. J., Beato M. Human uterine fluid proteins: gel electrophoretic pattern and progesterone-binding properties. Fertil Steril. 1977 Sep;28(9):972–980. doi: 10.1016/s0015-0282(16)42800-1. [DOI] [PubMed] [Google Scholar]
  49. Westley B., Rochefort H. A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell. 1980 Jun;20(2):353–362. doi: 10.1016/0092-8674(80)90621-2. [DOI] [PubMed] [Google Scholar]
  50. Westley B., Rochefort H. Estradiol induced proteins in the MCF7 human breast cancer cell line. Biochem Biophys Res Commun. 1979 Sep 27;90(2):410–416. doi: 10.1016/0006-291x(79)91250-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES