Abstract
Pretreatment of sarcoplasmic membranes with acetic or maleic anhydrides, which interact principally with amino groups, resulted in an inhibition of Ca2+ accumulation and ATPase activity. The presence of ATP, ADP or adenosine 5'-[beta, gamma-imido]triphosphate in the modification medium selectively protected against the inactivation of ATPase activity by the anhydride but did not protect against the inhibition of Ca2+ accumulation. Acetic anhydride modification in the presence of ATP appeared to increase specifically the permeability of the sarcoplasmic reticulum membrane to Ca2+ but not to sucrose, Tris, Na+ or Pi. The chemical modification stimulated a rapid release of Ca2+ from sarcoplasmic reticulum vesicles passively or actively loaded with calcium, from liposomes reconstituted with the partially purified ATPase fraction but not from those reconstituted with the purified ATPase. The inactivation of Ca2+ accumulation by acetic anhydride (in the presence of ATP) was rapid and strongly pH-dependent with an estimated pK value above 8.3 for the reactive group(s). The negatively charged reagents pyridoxal 5-phosphate and trinitrobenzene-sulphonate, which also interact with amino groups, did not stimulate Ca2+ release. Since these reagents do not penetrate the sarcoplasmic reticulum membranes, it is proposed that Ca2+ release is promoted by modification of internally located, positively charged amino group(s).
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AVRON M. Photophosphorylation by swiss-chard chloroplasts. Biochim Biophys Acta. 1960 May 20;40:257–272. doi: 10.1016/0006-3002(60)91350-0. [DOI] [PubMed] [Google Scholar]
- Berman M. C. Energy coupling and uncoupling of active calcium transport by sarcoplasmic reticulum membranes. Biochim Biophys Acta. 1982 Aug 11;694(1):95–121. doi: 10.1016/0304-4157(82)90015-6. [DOI] [PubMed] [Google Scholar]
- Butler P. J., Harris J. I., Hartley B. S., Lebeman R. The use of maleic anhydride for the reversible blocking of amino groups in polypeptide chains. Biochem J. 1969 May;112(5):679–689. doi: 10.1042/bj1120679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
- Ford L. E., Podolsky R. J. Regenerative calcium release within muscle cells. Science. 1970 Jan 2;167(3914):58–59. doi: 10.1126/science.167.3914.58. [DOI] [PubMed] [Google Scholar]
- Freedman R. B., Radda G. K. The reaction of 2,4,6-trinitrobenzenesulphonic acid with amino acids, Peptides and proteins. Biochem J. 1968 Jul;108(3):383–391. doi: 10.1042/bj1080383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hidalgo C., Petrucci D. A., Vergara C. Uncoupling of Ca2+ transport in sarcoplasmic reticulum as a result of labeling lipid amino groups and inhibition of Ca2+-ATPase activity by modification of lysine residues of the Ca2+-ATPase polypeptide. J Biol Chem. 1982 Jan 10;257(1):208–216. [PubMed] [Google Scholar]
- Ikemoto N., Morgan J. F., Yamada S. Ca2+-controlled conformational states of the Ca2+ transport enzyme of sarcoplasmic reticulum. J Biol Chem. 1978 Nov 25;253(22):8027–8033. [PubMed] [Google Scholar]
- Kasahara M., Hinkle P. C. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem. 1977 Oct 25;252(20):7384–7390. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MARTONOSI A., FERETOS R. SARCOPLASMIC RETICULUM. I. THE UPTAKE OF CA++ BY SARCOPLASMIC RETICULUM FRAGMENTS. J Biol Chem. 1964 Feb;239:648–658. [PubMed] [Google Scholar]
- MacLennan D. H. Purification and properties of an adenosine triphosphatase from sarcoplasmic reticulum. J Biol Chem. 1970 Sep 10;245(17):4508–4518. [PubMed] [Google Scholar]
- MacLennan D. H., Shoshan V., Wood D. S. Studies of Ca2+ release from sarcoplasmic reticulum. Ann N Y Acad Sci. 1982;402:470–477. doi: 10.1111/j.1749-6632.1982.tb25769.x. [DOI] [PubMed] [Google Scholar]
- Mitchinson C., Wilderspin A. F., Trinnaman B. J., Green N. M. Identification of a labelled peptide after stoicheiometric reaction of fluorescein isothiocyanate with the Ca2+ -dependent adenosine triphosphatase of sarcoplasmic reticulum. FEBS Lett. 1982 Sep 6;146(1):87–92. doi: 10.1016/0014-5793(82)80710-2. [DOI] [PubMed] [Google Scholar]
- Murphy A. J. Sarcoplasmic reticulum adenosine triphosphatase: labeling of an essential lysyl residue with pyridoxal-5'-phosphate. Arch Biochem Biophys. 1977 Apr 15;180(1):114–120. doi: 10.1016/0003-9861(77)90014-5. [DOI] [PubMed] [Google Scholar]
- Murphy A. J. Sulfhydryl group modification of sarcoplasmic reticulum membranes. Biochemistry. 1976 Oct 5;15(20):4492–4496. doi: 10.1021/bi00665a025. [DOI] [PubMed] [Google Scholar]
- Nakajima Y., Endo M. Release of calcium induced by 'depolarisation' of the sarcoplasmic reticulum membrane. Nat New Biol. 1973 Dec 19;246(155):216–218. doi: 10.1038/newbio246216a0. [DOI] [PubMed] [Google Scholar]
- Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
- Pick U., Karlish S. J. Indications for an oligomeric structure and for conformational changes in sarcoplasmic reticulum Ca2+-ATPase labelled selectively with fluorescein. Biochim Biophys Acta. 1980 Nov 20;626(1):255–261. doi: 10.1016/0005-2795(80)90216-0. [DOI] [PubMed] [Google Scholar]
- Schindler M., Sharon N. Reversible inactivation of lactose synthase by the modification of His 32 in human alpha-lactalbumin. Biochem Biophys Res Commun. 1976 Mar 8;69(1):167–173. doi: 10.1016/s0006-291x(76)80287-2. [DOI] [PubMed] [Google Scholar]
- Schmidt D. E., Jr, Westheimer F. H. PK of the lysine amino group at the active site of acetoacetate decarboxylase. Biochemistry. 1971 Mar 30;10(7):1249–1253. doi: 10.1021/bi00783a023. [DOI] [PubMed] [Google Scholar]
- Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
- Shoshan V., MacLennan D. H., Wood D. S. A proton gradient controls a calcium-release channel in sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4828–4832. doi: 10.1073/pnas.78.8.4828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shoshan V., MacLennan D. H., Wood D. S. Tetraphenylboron causes Ca2+ release in isolated sarcoplasmic reticulum and in skinned muscle fibers. J Biol Chem. 1983 Mar 10;258(5):2837–2842. [PubMed] [Google Scholar]
- Taguchi T., Kasai M. Tetraphenylboron increases choline permeability through a calcium release channel of isolated sarcoplasmic reticulum. J Biochem. 1984 Jul;96(1):179–188. doi: 10.1093/oxfordjournals.jbchem.a134811. [DOI] [PubMed] [Google Scholar]
- Vale M. G. Localization of the amino phospholipids in sarcoplasmic reticulum membranes revealed by trinitrobenzenesulfonate and fluorodinitrobenzene. Biochim Biophys Acta. 1977 Nov 15;471(1):39–48. doi: 10.1016/0005-2736(77)90391-1. [DOI] [PubMed] [Google Scholar]
- Vergara J., Tsien R. Y., Delay M. Inositol 1,4,5-trisphosphate: a possible chemical link in excitation-contraction coupling in muscle. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6352–6356. doi: 10.1073/pnas.82.18.6352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volpe P., Salviati G., Di Virgilio F., Pozzan T. Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature. 1985 Jul 25;316(6026):347–349. doi: 10.1038/316347a0. [DOI] [PubMed] [Google Scholar]
