Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Dec 1;240(2):605–607. doi: 10.1042/bj2400605

Olfactory adenylate cyclase of the rat. Stimulation by odorants and inhibition by Ca2+.

S G Shirley, C J Robinson, K Dickinson, R Aujla, G H Dodd
PMCID: PMC1147457  PMID: 3814101

Abstract

Membranes prepared from the olfactory mucosa of the rat show a high level of adenylate cyclase activity. The activity increases up to 2-fold in the presence of physiologically relevant concentrations of odorants and is inhibited by Ca2+. The level of cyclase activity found is sufficient to explain the speed of olfactory transduction, which occurs on a time scale of tens of milliseconds.

Full text

PDF
605

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Earp H. S., Steiner A. L. Compartmentalization of cyclic nucleotide-mediated hormone action. Annu Rev Pharmacol Toxicol. 1978;18:431–459. doi: 10.1146/annurev.pa.18.040178.002243. [DOI] [PubMed] [Google Scholar]
  3. Getchell T. V., Margolis F. L., Getchell M. L. Perireceptor and receptor events in vertebrate olfaction. Prog Neurobiol. 1984;23(4):317–345. doi: 10.1016/0301-0082(84)90008-x. [DOI] [PubMed] [Google Scholar]
  4. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  5. Kurihara K., Koyama N. High activity of adenyl cyclase in olfactory and gustatory organs. Biochem Biophys Res Commun. 1972 Jul 11;48(1):30–34. doi: 10.1016/0006-291x(72)90339-7. [DOI] [PubMed] [Google Scholar]
  6. Menco B. P. Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory structures of frog, ox, rat, and dog. I. A general survey. Cell Tissue Res. 1980;207(2):183–209. doi: 10.1007/BF00237805. [DOI] [PubMed] [Google Scholar]
  7. Menevse A., Dodd G., Poynder T. M. Evidence for the specific involvement of cyclic AMP in the olfactory transduction mechanism. Biochem Biophys Res Commun. 1977 Jul 25;77(2):671–677. doi: 10.1016/s0006-291x(77)80031-4. [DOI] [PubMed] [Google Scholar]
  8. OTTOSON D. Analysis of the electrical activity of the olfactory epithelium. Acta Physiol Scand Suppl. 1955;35(122):1–83. [PubMed] [Google Scholar]
  9. Pace U., Hanski E., Salomon Y., Lancet D. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature. 1985 Jul 18;316(6025):255–258. doi: 10.1038/316255a0. [DOI] [PubMed] [Google Scholar]
  10. Polak E. H. Mutiple profile-multiple receptor site model for vertebrate olfaction. J Theor Biol. 1973 Aug 22;40(3):469–484. doi: 10.1016/0022-5193(73)90005-2. [DOI] [PubMed] [Google Scholar]
  11. Terasaki W. L., Brooker G. Cardiac adenosine 3':5'-monophosphate. Free and bound forms in the isolated rat atrium. J Biol Chem. 1977 Feb 10;252(3):1041–1050. [PubMed] [Google Scholar]
  12. White A. A., Karr D. B. Improved two-step method for the assay of adenylate and guanylate cyclase. Anal Biochem. 1978 Apr;85(2):451–460. doi: 10.1016/0003-2697(78)90242-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES