Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Dec 15;240(3):771–776. doi: 10.1042/bj2400771

Metabolic effects of D-glyceraldehyde in isolated hepatocytes.

S M Maswoswe, F Daneshmand, D R Davies
PMCID: PMC1147485  PMID: 3827866

Abstract

The effects of D-glyceraldehyde on the hepatocyte contents of various metabolites were examined and compared with the effects of fructose, glycerol and dihydroxyacetone, which all enter the glycolytic/gluconeogenic pathways at the triose phosphate level. D-Glyceraldehyde (10 MM) caused a substantial depletion of hepatocyte ATP, as did equimolar concentrations of fructose and glycerol. D-Glyceraldehyde and fructose each caused a 2-fold increase in fructose 1,6-bisphosphate and the accumulation of millimolar quantities of fructose 1-phosphate in the cells. D-Glyceraldehyde caused an increase in the glycerol 3-phosphate content and a decrease in the dihydroxyacetone phosphate content, whereas dihydroxyacetone increased the content of both metabolites. The increase in the [glycerol 3-phosphate]/[dihydroxyacetone phosphate] ratio caused by D-glyceraldehyde was not accompanied by a change in the cytoplasmic [NAD+]/[NADH] ratio, as indicated by the unchanged [lactate]/[pyruvate] ratio. The accumulation of fructose 1-phosphate from D-glyceraldehyde and dihydroxyacetone phosphate in the hepatocyte can account for the depletion of the intracellular content of the latter. Presumably ATP is depleted as the result of the accumulation of millimolar amounts of a phosphorylated intermediate, as is the case with fructose and glycerol. It is suggested that the accumulation of fructose 1-phosphate during hepatic fructose metabolism is the result of a temporary increase in the D-glyceraldehyde concentration because of the high rate of fructose phosphorylation compared with triokinase activity. The equilibrium constant of aldolase favours the formation and thus the accumulation of fructose 1-phosphate.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelman R. C., Spolter P. D., Weinhouse S. Dietary and hormonal regulation of enzymes of fructose metabolism in rat liver. J Biol Chem. 1966 Nov 25;241(22):5467–5472. [PubMed] [Google Scholar]
  2. Berry M. N. The function of energy-dependent redox reactions in cell metabolism. FEBS Lett. 1980 Aug 25;117 (Suppl):K106–K120. doi: 10.1016/0014-5793(80)80575-8. [DOI] [PubMed] [Google Scholar]
  3. Clark D. G., Filsell O. H., Topping D. L. Effects of fructose concentration on carbohydrate metabolism, heat production and substrate cycling in isolated rat hepatocytes. Biochem J. 1979 Dec 15;184(3):501–507. doi: 10.1042/bj1840501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Claus T. H., El-Maghrabi M. R., Pilkis S. J. Modulation of the phosphorylation state of rat liver pyruvate kinase by allosteric effectors and insulin. J Biol Chem. 1979 Aug 25;254(16):7855–7864. [PubMed] [Google Scholar]
  5. Des Rosiers C., Lalanne M., Willemot J. Glycerol-induced adenine nucleotide catabolism in rat liver cells. Can J Biochem. 1982 Dec;60(12):1101–1108. doi: 10.1139/o82-141. [DOI] [PubMed] [Google Scholar]
  6. Frandsen E. K., Grunnet N. Kinetic properties of triokinase from rat liver. Eur J Biochem. 1971 Dec 10;23(3):588–592. doi: 10.1111/j.1432-1033.1971.tb01658.x. [DOI] [PubMed] [Google Scholar]
  7. HEINZ F., LAMPRECHT W. [Concentration and characterization of a triosekinase from liver. On the biochemistry of fructose metabolism. III]. Hoppe Seylers Z Physiol Chem. 1961 May 30;324:88–100. doi: 10.1515/bchm2.1961.324.1.88. [DOI] [PubMed] [Google Scholar]
  8. Heinz F., Junghänel J. Metabolitmuster in Rattenleber nach Fructoseapplikation. Hoppe Seylers Z Physiol Chem. 1969 Jul;350(7):859–866. [PubMed] [Google Scholar]
  9. Hers H. G., Hue L. Gluconeogenesis and related aspects of glycolysis. Annu Rev Biochem. 1983;52:617–653. doi: 10.1146/annurev.bi.52.070183.003153. [DOI] [PubMed] [Google Scholar]
  10. Hue L., Hers H. G. The conversion of (4- 3 H)fructose and of (4- 3 H)glucose to liver glycogen in the mouse. An investigation of the glyceraldehyde crossroads. Eur J Biochem. 1972 Sep 18;29(2):268–275. doi: 10.1111/j.1432-1033.1972.tb01984.x. [DOI] [PubMed] [Google Scholar]
  11. Iles R. A., Griffiths J. R., Stevens A. N., Gadian D. G., Porteous R. Effects of fructose on the energy metabolism and acid-base status of the perfused starved-rat liver. A 31phosphorus nuclear magnetic resonance study. Biochem J. 1980 Oct 15;192(1):191–202. doi: 10.1042/bj1920191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LEHNINGER A. L., SICE J., JENSEN E. V. Effect of substrate structure on the aldolase equilibrium. Biochim Biophys Acta. 1955 Jun;17(2):285–287. doi: 10.1016/0006-3002(55)90368-1. [DOI] [PubMed] [Google Scholar]
  13. Mapungwana S. M., Davies D. R. The effect of fructose on pyruvate kinase activity in isolated hepatocytes. Inhibition by allantoin and alanine. Biochem J. 1982 Oct 15;208(1):171–178. doi: 10.1042/bj2080171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mäenpä P. H., Raivio K. O., Kekomäki M. P. Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis. Science. 1968 Sep 20;161(3847):1253–1254. doi: 10.1126/science.161.3847.1253. [DOI] [PubMed] [Google Scholar]
  15. Pilkis S. J., Riou J. P., Claus T. H. Hormonal control of [14C]glucose synthesis from [U-14C]dihydroxyacetone and glycerol in isolated rat hepatocytes. J Biol Chem. 1976 Dec 25;251(24):7841–7852. [PubMed] [Google Scholar]
  16. Sestoft L., Tonnesen K., Hansen F. V., Damgaard S. E. Fructose and D-glyceraldehyde metabolism in the isolated perfused pig liver. Eur J Biochem. 1972 Nov 7;30(3):542–552. doi: 10.1111/j.1432-1033.1972.tb02125.x. [DOI] [PubMed] [Google Scholar]
  17. Siess E. A., Wieland O. H. Phosphorylation state of cytosolic and mitochondrial adenine nucleotides and of pyruvate dehydrogenase in isolated rat liver cells. Biochem J. 1976 Apr 15;156(1):91–102. doi: 10.1042/bj1560091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sillero M. A., Sillero A., Sols A. Enzymes involved in fructose metabolism in lir and the glyceraldehyde metabolic crossroads. Eur J Biochem. 1969 Sep;10(2):345–350. doi: 10.1111/j.1432-1033.1969.tb00696.x. [DOI] [PubMed] [Google Scholar]
  19. Van de Werve G., Hers H. G. Mechanism of activation of glycogen phosphorylase by fructose in the liver. Stimulation of phosphorylase kinase related to the consumption of adenosine triphosphate. Biochem J. 1979 Jan 15;178(1):119–126. doi: 10.1042/bj1780119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Van den Berghe G., Bontemps F., Hers H. G. Purine catabolism in isolated rat hepatocytes. Influence of coformycin. Biochem J. 1980 Jun 15;188(3):913–920. doi: 10.1042/bj1880913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Van den Berghe G. Metabolic effects of fructose in the liver. Curr Top Cell Regul. 1978;13:97–135. doi: 10.1016/b978-0-12-152813-3.50008-2. [DOI] [PubMed] [Google Scholar]
  22. Veech R. L., Raijman L., Dalziel K., Krebs H. A. Disequilibrium in the triose phosphate isomerase system in rat liver. Biochem J. 1969 Dec;115(4):837–842. doi: 10.1042/bj1150837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Veneziale C. M. Gluconeogenesis from D-glyceraldehyde and dihydroxyacetone in isolated rat liver. Stimulation by glucagon. Biochemistry. 1972 Aug 15;11(17):3286–3289. doi: 10.1021/bi00767a025. [DOI] [PubMed] [Google Scholar]
  24. Woods H. F., Eggleston L. V., Krebs H. A. The cause of hepatic accumulation of fructose 1-phosphate on fructose loading. Biochem J. 1970 Sep;119(3):501–510. doi: 10.1042/bj1190501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woods H. F., Krebs H. A. The effect of glycerol and dihydroxyacetone on hepatic adenine nucleotides. Biochem J. 1973 Jan;132(1):55–60. doi: 10.1042/bj1320055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. van den Berghe G., Bronfman M., Vanneste R., Hers H. G. The mechanism of adenosine triphosphate depletion in the liver after a load of fructose. A kinetic study of liver adenylate deaminase. Biochem J. 1977 Mar 15;162(3):601–609. doi: 10.1042/bj1620601. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES