Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Dec 15;240(3):843–846. doi: 10.1042/bj2400843

Protein degradation in cat liver cells.

S V Silva, J R Mercer
PMCID: PMC1147496  PMID: 3827872

Abstract

Body proteins in cats were prelabelled with [14C]valine, and protein degradation was studied in isolated hepatocytes. Amino acids appeared to have a direct inhibitory effect on protein degradation, but the effects were generally smaller than those previously shown in the rat. The amino acid control of protein degradation in the cat differs from that in the rat, as shown by the lack of effects of glutamine, asparagine, arginine or methionine in cat hepatocytes. This may be related to the unique features of protein metabolism of this species. NH4Cl, leupeptin and amino acids, which suppress lysosomal protein degradation by different mechanisms, caused less than 30% inhibition of protein degradation when used at the optimum concentrations reported for the rat. The ability of the lysosomal system to respond to nutritional deprivation is apparently lower in the cat than in the rat.

Full text

PDF
843

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amenta J. S., Hlivko T. J., McBee A. G., Shinozuka H., Brocher S. Specific inhibition by NH4CL of autophagy-associated proteloysis in cultured fibroblasts. Exp Cell Res. 1978 Sep;115(2):357–366. doi: 10.1016/0014-4827(78)90289-6. [DOI] [PubMed] [Google Scholar]
  2. Amenta J. S., Sargus M. J., Baccino F. M. Effect of microtubular or translational inhibitors on general cell protein degradation. Evidence for a dual catabolic pathway. Biochem J. 1977 Nov 15;168(2):223–227. doi: 10.1042/bj1680223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amenta J. S., Sargus M. J., Venkatesan S., Shinozuka H. Role of the vacuolar apparatus in augmented protein degradation in cultured fibroblasts. J Cell Physiol. 1978 Jan;94(1):77–86. doi: 10.1002/jcp.1040940110. [DOI] [PubMed] [Google Scholar]
  4. Ascoli M., Puett D. Degradation of receptor-bound human choriogonadotropin by murine Leydig tumor cells. J Biol Chem. 1978 Jul 25;253(14):4892–4899. [PubMed] [Google Scholar]
  5. Ballard F. J. Intracellular protein degradation. Essays Biochem. 1977;13:1–37. [PubMed] [Google Scholar]
  6. Ballard F. J., Knowles S. E., Wong S. S., Bodner J. B., Wood C. M., Gunn J. M. Inhibition of protein breakdown in cultured cells is a consistent response to growth factors. FEBS Lett. 1980 Jun 2;114(2):209–212. doi: 10.1016/0014-5793(80)81116-1. [DOI] [PubMed] [Google Scholar]
  7. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bohley P., Riemann S., Koelsch R., Lasch J. Protein degradation in rat liver cells. Acta Biol Med Ger. 1977;36(11-12):1821–1822. [PubMed] [Google Scholar]
  9. Carpenter G., Cohen S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol. 1976 Oct;71(1):159–171. doi: 10.1083/jcb.71.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Conde R. D., Scornik O. A. Role of protein degradation in the growth of livers after a nutritional shift. Biochem J. 1976 Aug 15;158(2):385–390. doi: 10.1042/bj1580385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Das T. K., Waterlow J. C. The rate of adaptation of urea cycle enzymes, aminotransferases and glutamic dehydrogenase to changes in dietary protein intake. Br J Nutr. 1974 Sep;32(2):353–373. doi: 10.1079/bjn19740088. [DOI] [PubMed] [Google Scholar]
  12. Dunn W. A., Aronson N. N., Jr Inhibition of glycoprotein catabolism in vivo and in the perfused rat liver. Acta Biol Med Ger. 1977;36(11-12):1917–1921. [PubMed] [Google Scholar]
  13. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  14. Elliott K. R., Pogson C. I. Preparation and characterization of isolated parenchymal cells from guinea pig liver. Mol Cell Biochem. 1977 May 31;16(1):23–29. doi: 10.1007/BF01769835. [DOI] [PubMed] [Google Scholar]
  15. Epstein D., Elias-Bishko S., Hershko A. Requirement for protein synthesis in the regulation of protein breakdown in cultured hepatoma cells. Biochemistry. 1975 Nov 18;14(23):5199–5204. doi: 10.1021/bi00694a028. [DOI] [PubMed] [Google Scholar]
  16. GREAVES J. P., SCOTT P. P. Nutrition of the cat. 3. Protein requirements for nitrogen equilibrium in adult cats maintained on a mixed diet. Br J Nutr. 1960;14:361–369. doi: 10.1079/bjn19600047. [DOI] [PubMed] [Google Scholar]
  17. Garlick P. J., Millward D. J., James W. P. The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats. Biochem J. 1973 Dec;136(4):935–945. doi: 10.1042/bj1360935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Garlick P. J., Millward D. J., James W. P., Waterlow J. C. The effect of protein deprivation and starvation on the rate of protein synthesis in tissues of the rat. Biochim Biophys Acta. 1975 Nov 18;414(1):71–84. doi: 10.1016/0005-2787(75)90126-4. [DOI] [PubMed] [Google Scholar]
  19. Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  20. Hopgood M. F., Clark M. G., Ballard F. J. Inhibition of protein degradation in isolated rat hepatocytes. Biochem J. 1977 May 15;164(2):399–407. doi: 10.1042/bj1640399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kirschke H., Langner J., Wiederanders B., Ansorge S., Bohley P., Broghammer U. Intrazellulärer Proteinabbau. VII. Kathepsin L und H: Zwei neue Proteinasen aus Rattenleberlysosomen. Acta Biol Med Ger. 1976;35(3-4):285–299. [PubMed] [Google Scholar]
  22. Kirschke H., Langner J., Wiederanders B., Ansorge S., Bohley P. Cathepsin L. A new proteinase from rat-liver lysosomes. Eur J Biochem. 1977 Apr 1;74(2):293–301. doi: 10.1111/j.1432-1033.1977.tb11393.x. [DOI] [PubMed] [Google Scholar]
  23. Knowles S. E., Ballard F. J. Selective control of the degradation of normal and aberrant proteins in Reuber H35 hepatoma cells. Biochem J. 1976 Jun 15;156(3):609–617. doi: 10.1042/bj1560609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mitchener J. S., Shelburne J. D., Bradford W. D., Hawkins H. K. Cellular autophagocytosis induced by deprivation of serum and amino acids in HeLa cells. Am J Pathol. 1976 Jun;83(3):485–492. [PMC free article] [PubMed] [Google Scholar]
  25. Mortimore G. E., Mondon C. E. Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis. J Biol Chem. 1970 May 10;245(9):2375–2383. [PubMed] [Google Scholar]
  26. Mortimore G. E., Schworer C. M. Induction of autophagy by amino-acid deprivation in perfused rat liver. Nature. 1977 Nov 10;270(5633):174–176. doi: 10.1038/270174a0. [DOI] [PubMed] [Google Scholar]
  27. Neely A. N., Cox J. R., Fortney J. A., Schworer C. M., Mortimore G. E. Alterations of lysosomal size and density during rat liver perfusion. Suppression by insulin and amino acids. J Biol Chem. 1977 Oct 10;252(19):6948–6954. [PubMed] [Google Scholar]
  28. Neff N. T., DeMartino G. N., Goldberg A. L. The effect of protease inhibitors and decreased temperature on the degradation of different classes of proteins in cultured hepatocytes. J Cell Physiol. 1979 Dec;101(3):439–457. doi: 10.1002/jcp.1041010311. [DOI] [PubMed] [Google Scholar]
  29. Poole B., Wibo M. Protein degradation in cultured cells. The effect of fresh medium, fluoride, and iodoacetate on the digestion of cellular protein of rat fibroblasts. J Biol Chem. 1973 Sep 10;248(17):6221–6226. [PubMed] [Google Scholar]
  30. Rogers Q. R., Morris J. G., Freedland R. A. Lack of hepatic enzymatic adaptation to low and high levels of dietary protein in the adult cat. Enzyme. 1977;22(5):348–356. doi: 10.1159/000458816. [DOI] [PubMed] [Google Scholar]
  31. Schreiber G., Schreiber M. The preparation of single cell suspensions from liver and their use for the study of protein synthesis. Subcell Biochem. 1973;2(4):307–353. [PubMed] [Google Scholar]
  32. Schworer C. M., Shiffer K. A., Mortimore G. E. Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J Biol Chem. 1981 Jul 25;256(14):7652–7658. [PubMed] [Google Scholar]
  33. Scornik O. A., Botbol V. Role of changes in protein degradation in the growth of regenerating livers. J Biol Chem. 1976 May 25;251(10):2891–2897. [PubMed] [Google Scholar]
  34. Seglen P. O., Gordon P. B., Poli A. Amino acid inhibition of the autophagic/lysosomal pathway of protein degradation in isolated rat hepatocytes. Biochim Biophys Acta. 1980 Jun 5;630(1):103–118. doi: 10.1016/0304-4165(80)90141-5. [DOI] [PubMed] [Google Scholar]
  35. Seglen P. O., Grinde B., Solheim A. E. Inhibition of the lysosomal pathway of protein degradation in isolated rat hepatocytes by ammonia, methylamine, chloroquine and leupeptin. Eur J Biochem. 1979 Apr 2;95(2):215–225. doi: 10.1111/j.1432-1033.1979.tb12956.x. [DOI] [PubMed] [Google Scholar]
  36. Seglen P. O., Reith A. Ammonia inhibition of protein degradation in isolated rat hepatocytes. Quantitative ultrastructural alterations in the lysosomal system. Exp Cell Res. 1976 Jul;100(2):276–280. doi: 10.1016/0014-4827(76)90148-8. [DOI] [PubMed] [Google Scholar]
  37. Shinnick F. L., Harper A. E. Branched-chain amino acid oxidation by isolated rat tissue preparations. Biochim Biophys Acta. 1976 Jul 21;437(2):477–486. doi: 10.1016/0304-4165(76)90016-7. [DOI] [PubMed] [Google Scholar]
  38. Silva S. V., Mercer J. R. Effect of protein intake on amino acid catabolism and gluconeogenesis by isolated hepatocytes from the cat (Felis domestica). Comp Biochem Physiol B. 1985;80(3):603–607. doi: 10.1016/0305-0491(85)90298-6. [DOI] [PubMed] [Google Scholar]
  39. Siman R., Baudry M., Lynch G. Purification from synaptosomal plasma membranes of calpain I, a thiol protease activated by micromolar calcium concentrations. J Neurochem. 1983 Oct;41(4):950–956. doi: 10.1111/j.1471-4159.1983.tb09039.x. [DOI] [PubMed] [Google Scholar]
  40. Sommercorn J. M., Swick R. W. Protein degradation in primary monolayer cultures of adult rat hepatocytes. Further evidence for the regulation of protein degradation by amino acids. J Biol Chem. 1981 May 25;256(10):4816–4821. [PubMed] [Google Scholar]
  41. Tischler M. E., Fagan J. M. Relationship of the reduction-oxidation state to protein degradation in skeletal and atrial muscle. Arch Biochem Biophys. 1982 Aug;217(1):191–201. doi: 10.1016/0003-9861(82)90493-3. [DOI] [PubMed] [Google Scholar]
  42. Warburton M. J., Poole B. Effect of medium composition on protein degradation and DNA synthesis in rat embryo fibroblasts. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2427–2431. doi: 10.1073/pnas.74.6.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wohlhueter R. M., Harper A. E. Coinduction of rat liver branched chain alpha-keto acid dehydrogenase activities. J Biol Chem. 1970 May 10;245(9):2391–2401. [PubMed] [Google Scholar]
  44. Woodside K. H. Effects of cycloheximide on protein degradation and gluconeogenesis in the perfused rat liver. Biochim Biophys Acta. 1976 Jan 14;421(1):70–79. doi: 10.1016/0304-4165(76)90170-7. [DOI] [PubMed] [Google Scholar]
  45. Woodside K. H., Mortimore G. E. Suppression of protein turnover by amino acids in the perfused rat liver. J Biol Chem. 1972 Oct 25;247(20):6474–6481. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES