Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Dec 15;240(3):891–895. doi: 10.1042/bj2400891

The occurrence of polyenoic fatty acids with greater than 22 carbon atoms in mammalian spermatozoa.

A Poulos, P Sharp, D Johnson, I White, A Fellenberg
PMCID: PMC1147503  PMID: 3827878

Abstract

Fatty acids with carbon chain lengths greater than 22 (VLCFA) have been detected in boar, ram, bull and human spermatozoa. Saturated and mono-unsaturated fatty acids were present in all spermatozoa but, except for human spermatozoa, polyenoic fatty acids were quantitatively the most important components. Marked differences in polyenoic fatty acid composition were observed. Whereas human spermatozoa contain predominantly di-, tri- and tetraenoic fatty acids with up to 32 carbon atoms, boar, ram and bull spermatozoa also contain pentaenoic and/or hexaenoic acids with up to 34 carbon atoms. Human and boar spermatozoa differ markedly from those of the ram and bull in that only n-6 series acids are present.

Full text

PDF
891

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki E., Ariga T., Murata T. Chemical ionization mass spectrometry of polyunsaturated fatty acids of human serum. Biomed Mass Spectrom. 1976 Dec;3(6):261–264. doi: 10.1002/bms.1200030602. [DOI] [PubMed] [Google Scholar]
  2. Aveldaño M. I., Sprecher H. Synthesis of hydroxy fatty acids from 4, 7, 10, 13, 16, 19-[1-14C] docosahexaenoic acid by human platelets. J Biol Chem. 1983 Aug 10;258(15):9339–9343. [PubMed] [Google Scholar]
  3. Berkovic S. F., Zajac J. D., Warburton D. J., Merory J. R., Fellenberg A. J., Poulos A., Pollard A. C. Adrenomyeloneuropathy--clinical and biochemical diagnosis. Aust N Z J Med. 1983 Dec;13(6):594–600. doi: 10.1111/j.1445-5994.1983.tb02611.x. [DOI] [PubMed] [Google Scholar]
  4. Bridges R. B., Coniglio J. G. The biosynthesis of delta-9,12,15,18-tetracosatetraenoic and of delta-6,9,12,15,18-tetracosapentaenoic acids by rat testes. J Biol Chem. 1970 Jan 10;245(1):46–49. [PubMed] [Google Scholar]
  5. Carpenter M. P. The lipid composition of maturing rat testis. The effect of alpha-tocopherol. Biochim Biophys Acta. 1971 Feb 2;231(1):52–79. doi: 10.1016/0005-2760(71)90255-4. [DOI] [PubMed] [Google Scholar]
  6. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  7. Goldberg I., Shechter I., Bloch K. Fatty acyl-coenzyme A elongation in brain of normal and quaking mice. Science. 1973 Nov 2;182(4111):497–499. doi: 10.1126/science.182.4111.497. [DOI] [PubMed] [Google Scholar]
  8. Grogan W. M., Huth E. G. Biosynthesis of long-chain polyenoic acids from arachidonic acid in cultures of enriched spermatocytes and spermatids from mouse testis. Lipids. 1983 Apr;18(4):275–284. doi: 10.1007/BF02534702. [DOI] [PubMed] [Google Scholar]
  9. Grogan W. M., Lam J. W. Fatty acid synthesis in isolated spermatocytes and spermatids of mouse testis. Lipids. 1982 Sep;17(9):604–611. doi: 10.1007/BF02535366. [DOI] [PubMed] [Google Scholar]
  10. Grogan W. M. Metabolism of arachidonate in rat testis: characterization of 26-30 carbon polyenoic acids. Lipids. 1984 May;19(5):341–346. doi: 10.1007/BF02534785. [DOI] [PubMed] [Google Scholar]
  11. Hyman B. T., Spector A. A. Accumulation of N-3 polyunsaturated fatty acids cultured human Y79 retinoblastoma cells. J Neurochem. 1981 Jul;37(1):60–69. doi: 10.1111/j.1471-4159.1981.tb05291.x. [DOI] [PubMed] [Google Scholar]
  12. Lee T. H., Hoover R. L., Williams J. D., Sperling R. I., Ravalese J., 3rd, Spur B. W., Robinson D. R., Corey E. J., Lewis R. A., Austen K. F. Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med. 1985 May 9;312(19):1217–1224. doi: 10.1056/NEJM198505093121903. [DOI] [PubMed] [Google Scholar]
  13. Lewis R. A., Austen K. F. The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology. J Clin Invest. 1984 Apr;73(4):889–897. doi: 10.1172/JCI111312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mathers L., Bailey M. J. Enzyme deletions and essential fatty acid metabolism in cultured cells. J Biol Chem. 1975 Feb 10;250(3):1152–1153. [PubMed] [Google Scholar]
  15. Naughton J. M. Supply of polyenoic fatty acids to the mammalian brain: the ease of conversion of the short-chain essential fatty acids to their longer chain polyunsaturated metabolites in liver, brain, placenta and blood. Int J Biochem. 1981;13(1):21–32. doi: 10.1016/0020-711x(81)90132-4. [DOI] [PubMed] [Google Scholar]
  16. Needleman P., Raz A., Minkes M. S., Ferrendelli J. A., Sprecher H. Triene prostaglandins: prostacyclin and thromboxane biosynthesis and unique biological properties. Proc Natl Acad Sci U S A. 1979 Feb;76(2):944–948. doi: 10.1073/pnas.76.2.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Poulos A., Brown-Woodman P. D., White I. G., Cox R. I. Changes in phospholipids of ram spermatozoa during migration through the epididymis and possible origin of prostaglandin F2alpha in testicular and epididymal fluid. Biochim Biophys Acta. 1975 Apr 18;388(1):12–18. doi: 10.1016/0005-2760(75)90057-0. [DOI] [PubMed] [Google Scholar]
  18. Poulos A., Darin-Bennett A., White I. G. The phospholipid-bound fatty acids and aldehydes of mammalian spermatozoa. Comp Biochem Physiol B. 1973 Nov 15;46(3):541–549. doi: 10.1016/0305-0491(73)90094-1. [DOI] [PubMed] [Google Scholar]
  19. Poulos A., Sharp P., Singh H., Johnson D., Fellenberg A., Pollard A. Detection of a homologous series of C26-C38 polyenoic fatty acids in the brain of patients without peroxisomes (Zellweger's syndrome). Biochem J. 1986 Apr 15;235(2):607–610. doi: 10.1042/bj2350607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Robert J., Rebel G., Mandel P. Essential fatty acid metabolism in cultured astroblasts. Biochimie. 1977;59(4):417–423. doi: 10.1016/s0300-9084(77)80318-0. [DOI] [PubMed] [Google Scholar]
  21. Rosenthal M. D., Hill J. R. Human vascular endothelial cells synthesize and release 24- and 26-carbon polyunsaturated fatty acids. Biochim Biophys Acta. 1984 Sep 12;795(2):171–178. doi: 10.1016/0005-2760(84)90063-8. [DOI] [PubMed] [Google Scholar]
  22. Sprecher H., VanRollins M., Sun F., Wyche A., Needleman P. Dihomo-prostaglandins and -thromboxane. A prostaglandin family from adrenic acid that may be preferentially synthesized in the kidney. J Biol Chem. 1982 Apr 10;257(7):3912–3918. [PubMed] [Google Scholar]
  23. VanRollins M., Baker R. C., Sprecher H. W., Murphy R. C. Oxidation of docosahexaenoic acid by rat liver microsomes. J Biol Chem. 1984 May 10;259(9):5776–5783. [PubMed] [Google Scholar]
  24. Yoshida S., Takeshita M. Arachidoyl- and arachidonoyl-CoA elongation mechanism in swine cerebral microsomes. Biochim Biophys Acta. 1984 Aug 15;795(1):137–146. doi: 10.1016/0005-2760(84)90114-0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES