Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Jan 15;241(2):513–520. doi: 10.1042/bj2410513

Concanavalin A-agglutinability of membrane-skeleton-free vesicles and aged cellular remnants derived from human erythrocytes. Is the membrane skeleton required for agglutination?

S M Gokhale, N G Mehta
PMCID: PMC1147590  PMID: 3593206

Abstract

Vesicles and cell remnants have been obtained by aging of erythrocytes in vitro. The vesicles lacking the membrane skeletal proteins and the remnants known to possess a rigid skeleton have been used to assess the role of membrane skeletal proteins in the process of Con A (concanavalin A)-mediated agglutination of erythrocytes. Both the vesicles and the remnants were found to bind Con A at the same density as did intact cells. The vesicles, isolated from normal as well as from the Con A-agglutinable trypsin- and Pronase-treated cells, failed to agglutinate with Con A. They were, however, well agglutinated by WGA (wheat-germ agglutinin) and RCA [Ricinus communis (castor bean) agglutinin], indicating that the vesicles are not defective in agglutination. Large, cytoskeleton-free, vesicles prepared by another procedure also gave the same results. The aged remnants from trypsin- and Pronase-treated erythrocytes showed significantly decreased agglutination with Con A, but were agglutinated as well as the fresh cells by WGA and RCA. The agglutination with Con A is thus abolished when the membrane skeleton is absent, and reduced when it is rigid, suggesting that the skeleton may play an important role in the agglutination of erythrocytes by Con A.

Full text

PDF
513

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. A., Lovrien R. E. Erythrocyte membrane sidedness in lectin control of the Ca2+-A23187-mediated diskocyte goes to and comes from echinocyte conversion. Nature. 1981 Jul 9;292(5819):158–161. doi: 10.1038/292158a0. [DOI] [PubMed] [Google Scholar]
  2. Ash J. F., Vogt P. K., Singer S. J. Reversion from transformed to normal phenotype by inhibition of protein synthesis in rat kidney cells infected with a temperature-sensitive mutant of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3603–3607. doi: 10.1073/pnas.73.10.3603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bachi T., Schnebli H. P. Reaction of lectins with human erythrocytes. II. Mapping of conA receptors by freeze-etching electron microscopy. Exp Cell Res. 1975 Mar 15;91(2):285–295. doi: 10.1016/0014-4827(75)90106-8. [DOI] [PubMed] [Google Scholar]
  4. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  5. Ben-Ze'ev A. The cytoskeleton in cancer cells. Biochim Biophys Acta. 1985;780(3):197–212. doi: 10.1016/0304-419x(85)90003-4. [DOI] [PubMed] [Google Scholar]
  6. Bennett V. The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu Rev Biochem. 1985;54:273–304. doi: 10.1146/annurev.bi.54.070185.001421. [DOI] [PubMed] [Google Scholar]
  7. Bourguignon L. Y., Bourguignon G. J. Capping and the cytoskeleton. Int Rev Cytol. 1984;87:195–224. doi: 10.1016/s0074-7696(08)62443-2. [DOI] [PubMed] [Google Scholar]
  8. Brown J. C., Hunt R. C. Lectins. Int Rev Cytol. 1978;52:277–349. doi: 10.1016/s0074-7696(08)60758-5. [DOI] [PubMed] [Google Scholar]
  9. Chicken C. A., Sharom F. J. The concanavalin A receptor from human erythrocytes in lipid bilayer membranes. Interaction with concanavalin A and succinyl-concanavalin A. Biochim Biophys Acta. 1983 Apr 6;729(2):200–208. doi: 10.1016/0005-2736(83)90486-8. [DOI] [PubMed] [Google Scholar]
  10. Edelman G. M. Surface modulation in cell recognition and cell growth. Science. 1976 Apr 16;192(4236):218–226. doi: 10.1126/science.769162. [DOI] [PubMed] [Google Scholar]
  11. Fischer T. M., Haest C. W., Stöhr M., Kamp D., Deuticke B. Selective alteration of erythrocyte deformabiliby by SH-reagents: evidence for an involvement of spectrin in membrane shear elasticity. Biochim Biophys Acta. 1978 Jul 4;510(2):270–282. doi: 10.1016/0005-2736(78)90027-5. [DOI] [PubMed] [Google Scholar]
  12. Fowler V. M., Bennett V. Erythrocyte membrane tropomyosin. Purification and properties. J Biol Chem. 1984 May 10;259(9):5978–5989. [PubMed] [Google Scholar]
  13. Fowler V. M., Davis J. Q., Bennett V. Human erythrocyte myosin: identification and purification. J Cell Biol. 1985 Jan;100(1):47–55. doi: 10.1083/jcb.100.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fowler V., Taylor D. L. Spectrin plus band 4.1 cross-link actin. Regulation by micromolar calcium. J Cell Biol. 1980 May;85(2):361–376. doi: 10.1083/jcb.85.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gokhale S. M., Mehta N. G. Concanavalin A binding to human erythrocytes leads to alterations in properties of the membrane skeleton. Biochem J. 1987 Jan 15;241(2):521–525. doi: 10.1042/bj2410521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gokhale S. M., Mehta N. G. Glycophorin A interferes in the agglutination of human erythrocytes by concanavalin A. Explanation of the requirement for enzymic predigestion. Biochem J. 1987 Jan 15;241(2):505–511. doi: 10.1042/bj2410505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Guidotti G. Membrane proteins. Annu Rev Biochem. 1972;41:731–752. doi: 10.1146/annurev.bi.41.070172.003503. [DOI] [PubMed] [Google Scholar]
  18. Haest C. W., Plasa G., Kamp D., Deuticke B. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta. 1978 May 4;509(1):21–32. doi: 10.1016/0005-2736(78)90004-4. [DOI] [PubMed] [Google Scholar]
  19. Heath J. P. Direct evidence for microfilament-mediated capping of surface receptors on crawling fibroblasts. Nature. 1983 Apr 7;302(5908):532–534. doi: 10.1038/302532a0. [DOI] [PubMed] [Google Scholar]
  20. Ji T. H., Nicolson G. L. Lectin binding and perturbation of the outer surface of the cell membrane induces a transmembrane organizational alteration at the inner surface. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2212–2216. doi: 10.1073/pnas.71.6.2212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Johnson R. M., Taylor G., Meyer D. B. Shape and volume changes in erythrocyte ghosts and spectrin-actin networks. J Cell Biol. 1980 Aug;86(2):371–376. doi: 10.1083/jcb.86.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ketis N. V., Grant C. W. Time-dependent lectin binding to isolated receptors in model membranes. Biochim Biophys Acta. 1983 May 5;730(2):359–368. doi: 10.1016/0005-2736(83)90353-x. [DOI] [PubMed] [Google Scholar]
  23. Kirkpatrick F. Spectrin: current understanding of its physical, biochemical, and functional properties. Life Sci. 1976 Jul 1;19(1):1–17. doi: 10.1016/0024-3205(76)90368-4. [DOI] [PubMed] [Google Scholar]
  24. Lazarides E., Nelson W. J. Expression of spectrin in nonerythroid cells. Cell. 1982 Dec;31(3 Pt 2):505–508. doi: 10.1016/0092-8674(82)90306-3. [DOI] [PubMed] [Google Scholar]
  25. Lehto V. P., Virtanen I. Immunolocalization of a novel, cytoskeleton-associated polypeptide of Mr 230,000 daltons (p230). J Cell Biol. 1983 Mar;96(3):703–716. doi: 10.1083/jcb.96.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Leonards K. S., Ohki S. Isolation and characterization of large (0.5 - 1.0 micron) cytoskeleton-free vesicles from human and rabbit erythrocytes. Biochim Biophys Acta. 1983 Mar 9;728(3):383–393. doi: 10.1016/0005-2736(83)90510-2. [DOI] [PubMed] [Google Scholar]
  27. Levine J., Willard M. Redistribution of fodrin (a component of the cortical cytoplasm) accompanying capping of cell surface molecules. Proc Natl Acad Sci U S A. 1983 Jan;80(1):191–195. doi: 10.1073/pnas.80.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lutz H. U., Liu S. C., Palek J. Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles. J Cell Biol. 1977 Jun;73(3):548–560. doi: 10.1083/jcb.73.3.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lux S. E. Spectrin-actin membrane skeleton of normal and abnormal red blood cells. Semin Hematol. 1979 Jan;16(1):21–51. [PubMed] [Google Scholar]
  30. Maraviglia B., Davis J. H., Bloom M., Westerman J., Wirtz K. W. Human erythrocyte membranes are fluid down to -5 degrees C. Biochim Biophys Acta. 1982 Mar 23;686(1):137–140. doi: 10.1016/0005-2736(82)90160-2. [DOI] [PubMed] [Google Scholar]
  31. Marquardt M. D., Gordon J. A. Glutaraldehyde fixation and the mechanism of erythroycte agglutination by concanavalin A and soybean agglutinin. Exp Cell Res. 1975 Mar 15;91(2):310–316. doi: 10.1016/0014-4827(75)90109-3. [DOI] [PubMed] [Google Scholar]
  32. Müller H., Schmidt U., Lutz H. U. On the mechanism of vesicle release from ATP-depleted human red blood cells. Biochim Biophys Acta. 1981 Dec 7;649(2):462–470. doi: 10.1016/0005-2736(81)90437-5. [DOI] [PubMed] [Google Scholar]
  33. Nicolson G. L., Blaustein J. The interaction of Ricinus communis agglutinin with normal and tumor cell surfaces. Biochim Biophys Acta. 1972 May 9;266(2):543–547. doi: 10.1016/0005-2736(72)90109-5. [DOI] [PubMed] [Google Scholar]
  34. Schnebli H. P., Bächi T. Reaction of lectins with human erythrocytes. I. Factors governing the agglutination reaction. Exp Cell Res. 1975 Mar 1;91(1):175–183. doi: 10.1016/0014-4827(75)90155-x. [DOI] [PubMed] [Google Scholar]
  35. Schweizer E., Angst W., Lutz H. U. Glycoprotein topology on intact human red blood cells reevaluated by cross-linking following amino group supplementation. Biochemistry. 1982 Dec 21;21(26):6807–6818. doi: 10.1021/bi00269a029. [DOI] [PubMed] [Google Scholar]
  36. Sharom F. J., Barratt D. G., Grant C. W. Glycophorin and the concanavalin A receptor of human erythrocytes: their receptor function in lipid bilayers. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2751–2755. doi: 10.1073/pnas.74.7.2751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sheetz M. P. Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape. Semin Hematol. 1983 Jul;20(3):175–188. [PubMed] [Google Scholar]
  38. Su Y. X., Lin S., Edidin M. Lateral diffusion of human histocompatibility antigens in isolated plasma membranes. Biochim Biophys Acta. 1984 Sep 19;776(1):92–96. doi: 10.1016/0005-2736(84)90254-2. [DOI] [PubMed] [Google Scholar]
  39. Williamson P., Bateman J., Kozarsky K., Mattocks K., Hermanowicz N., Choe H. R., Schlegel R. A. Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. Cell. 1982 Oct;30(3):725–733. doi: 10.1016/0092-8674(82)90277-x. [DOI] [PubMed] [Google Scholar]
  40. Wise G. E., Shienvold F. L., Rubin R. W. Effects of pronase and concanavalin A upon the freeze-etch morphology of cell membranes of intact human erythrocytes. J Cell Sci. 1978 Apr;30:63–76. doi: 10.1242/jcs.30.1.63. [DOI] [PubMed] [Google Scholar]
  41. Wong A. J., Kiehart D. P., Pollard T. D. Myosin from human erythrocytes. J Biol Chem. 1985 Jan 10;260(1):46–49. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES