Abstract
Three properties related to the erythrocyte membrane skeleton are found to be altered after the binding of concanavalin A (Con A) to erythrocytes or their isolated membranes. Con A binding to normal erythrocytes imparts resistance to heat (49 degrees C)-induced fragmentation of the cells. The fragmentation, due to denaturation of spectrin at 49 degrees C, is prevented by Con A in a dose-dependent manner, but levels off at concentrations of Con A in excess of 100 micrograms/ml. The binding of Con A to ghosts isolated from normal, trypsin- or Pronase-treated cells prevents (completely or substantially) the elution of the skeletal protein complex when the membranes are extracted under low-ionic-strength conditions in the cold. The Con A-agglutinated membranes of trypsin- and Pronase-treated, but not normal, cells show cross-linking of skeletal proteins and band 3 with dimethyl adipimidate, a 0.86 nm (8.6 A)-span bifunctional reagent. The extent of cross-linking is greater in the Pronase-treated membrane than in the less-agglutinable trypsin-treated membranes. The results show that, after Con A has bound, rearrangements occur in the membrane that alter properties of the skeletal proteins. Additionally, redistribution of the skeletal proteins and the Con A receptor occurs in the lectin-agglutinated membranes.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. A., Lovrien R. E. Erythrocyte membrane sidedness in lectin control of the Ca2+-A23187-mediated diskocyte goes to and comes from echinocyte conversion. Nature. 1981 Jul 9;292(5819):158–161. doi: 10.1038/292158a0. [DOI] [PubMed] [Google Scholar]
- Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
- Bennett V., Stenbuck P. J. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature. 1979 Aug 9;280(5722):468–473. doi: 10.1038/280468a0. [DOI] [PubMed] [Google Scholar]
- Bennett V. The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu Rev Biochem. 1985;54:273–304. doi: 10.1146/annurev.bi.54.070185.001421. [DOI] [PubMed] [Google Scholar]
- Bourguignon L. Y., Bourguignon G. J. Capping and the cytoskeleton. Int Rev Cytol. 1984;87:195–224. doi: 10.1016/s0074-7696(08)62443-2. [DOI] [PubMed] [Google Scholar]
- Brandts J. F., Erickson L., Lysko K., Schwartz A. T., Taverna R. D. Calorimetric studies of the structural transitions of the human erythrocyte membrane. The involvement of spectrin in the A transition. Biochemistry. 1977 Jul 26;16(15):3450–3454. doi: 10.1021/bi00634a024. [DOI] [PubMed] [Google Scholar]
- Chrambach A., Rodbard D. Polyacrylamide gel electrophoresis. Science. 1971 Apr 30;172(3982):440–451. doi: 10.1126/science.172.3982.440. [DOI] [PubMed] [Google Scholar]
- Geiger B. Membrane-cytoskeleton interaction. Biochim Biophys Acta. 1983 Aug 11;737(3-4):305–341. doi: 10.1016/0304-4157(83)90005-9. [DOI] [PubMed] [Google Scholar]
- Gokhale S. M., Mehta N. G. Concanavalin A-agglutinability of membrane-skeleton-free vesicles and aged cellular remnants derived from human erythrocytes. Is the membrane skeleton required for agglutination? Biochem J. 1987 Jan 15;241(2):513–520. doi: 10.1042/bj2410513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gratzer W. B. Preparation of spectrin. Methods Enzymol. 1982;85(Pt B):475–480. doi: 10.1016/0076-6879(82)85046-5. [DOI] [PubMed] [Google Scholar]
- Heath J. P. Direct evidence for microfilament-mediated capping of surface receptors on crawling fibroblasts. Nature. 1983 Apr 7;302(5908):532–534. doi: 10.1038/302532a0. [DOI] [PubMed] [Google Scholar]
- Ji T. H., Ji I. Crosslinking of glycoproteins in human erythrocyte ghosts. J Mol Biol. 1974 Jun 15;86(1):129–137. doi: 10.1016/s0022-2836(74)80012-4. [DOI] [PubMed] [Google Scholar]
- Ji T. H., Nicolson G. L. Lectin binding and perturbation of the outer surface of the cell membrane induces a transmembrane organizational alteration at the inner surface. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2212–2216. doi: 10.1073/pnas.71.6.2212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jung G., Helm R. M., Carraway C. A., Carraway K. L. Mechanism of concanavalin A-induced anchorage of the major cell surface glycoproteins to the submembrane cytoskeleton in 13762 ascites mammary adenocarcinoma cells. J Cell Biol. 1984 Jan;98(1):179–187. doi: 10.1083/jcb.98.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lazarides E., Nelson W. J. Expression of spectrin in nonerythroid cells. Cell. 1982 Dec;31(3 Pt 2):505–508. doi: 10.1016/0092-8674(82)90306-3. [DOI] [PubMed] [Google Scholar]
- Lehto V. P., Virtanen I. Immunolocalization of a novel, cytoskeleton-associated polypeptide of Mr 230,000 daltons (p230). J Cell Biol. 1983 Mar;96(3):703–716. doi: 10.1083/jcb.96.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine J., Willard M. Redistribution of fodrin (a component of the cortical cytoplasm) accompanying capping of cell surface molecules. Proc Natl Acad Sci U S A. 1983 Jan;80(1):191–195. doi: 10.1073/pnas.80.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Litman D., Hsu D. J., Marchesi V. T. Evidence that spectrin binds to macromolecular complexes on the inner surface of the red cell membrane. J Cell Sci. 1980 Apr;42:1–22. doi: 10.1242/jcs.42.1.1. [DOI] [PubMed] [Google Scholar]
- Mehta N. G. Role of membrane integral proteins in the modulation of red cell shape by albumin, dinitrophenol and the glass effect. Biochim Biophys Acta. 1983 Feb 16;762(1):9–18. doi: 10.1016/0167-4889(83)90110-6. [DOI] [PubMed] [Google Scholar]
- Nelson W. J., Colaço C. A., Lazarides E. Involvement of spectrin in cell-surface receptor capping in lymphocytes. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1626–1630. doi: 10.1073/pnas.80.6.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolson G. L., Painter R. G. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J Cell Biol. 1973 Nov;59(2 Pt 1):395–406. doi: 10.1083/jcb.59.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roos E., Spiele H., Feltkamp C. A., Huisman H., Wiegant F. A., Traas J., Mesland D. A. Localization of cell surface glycoproteins in membrane domains associated with the underlying filament network. J Cell Biol. 1985 Nov;101(5 Pt 1):1817–1825. doi: 10.1083/jcb.101.5.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheetz M. P. Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape. Semin Hematol. 1983 Jul;20(3):175–188. [PubMed] [Google Scholar]
- Shotton D., Thompson K., Wofsy L., Branton D. Appearance and distribution of surface proteins of the human erythrocyte membrane. An electron microscope and immunochemical labeling study. J Cell Biol. 1978 Feb;76(2):512–531. doi: 10.1083/jcb.76.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ungewickell E., Gratzer W. Self-association of human spectrin. A thermodynamic and kinetic study. Eur J Biochem. 1978 Aug 1;88(2):379–385. doi: 10.1111/j.1432-1033.1978.tb12459.x. [DOI] [PubMed] [Google Scholar]
- Wise G. E., Shienvold F. L., Rubin R. W. Effects of pronase and concanavalin A upon the freeze-etch morphology of cell membranes of intact human erythrocytes. J Cell Sci. 1978 Apr;30:63–76. doi: 10.1242/jcs.30.1.63. [DOI] [PubMed] [Google Scholar]

