Abstract
In the present study we have investigated the effect of changes in the concentration of cytosolic free Ca2+ ([Ca2+]i) on the deacetylation-reacylation of PAF-acether (alkylacetylglycerophosphocholine, alkylacetyl-GPC) by rabbit platelets. Washed platelets were incubated with alkyl[3H]acetyl-GPC ([3H]acetyl-PAF) or [3H]alkylacetyl-GPC ([3H]alkyl-PAF) and [Ca2+]i was subsequently elevated by the addition of the ionophore A23187 or thrombin. The catabolism of PAF-acether was studied by measuring the release of [3H]acetate or the formation of [3H]alkylacyl-GPC. The ionophore inhibited the release of [3H]acetate and the formation of [3H]alkylacyl-GPC with no accumulation of lyso-[3H]PAF, indicating that the deacetylation of PAF-acether was blocked. The effect of ionophore on the deacetylation of PAF-acether was parallel with the increase of [Ca2+]i and could be reversed by the addition of EGTA. In contrast with the prolonged inhibition evoked by ionophore, thrombin, which induced a transient elevation of [Ca2+]i, merely delayed the deacetylation of PAF-acether. Since intact platelets failed to convert exogenous lyso-PAF, the effect of Ca2+ on its acylation was investigated by using platelet homogenates. These experiments showed that the acylation of lyso-PAF was inhibited by the exogenously added Ca2+, with a maximum effect at 1 mM. When the formation of endogenous lyso-PAF from the labelled pool of alkylacyl-GPC was examined, a prolonged increase in the concentration of lyso-PAF with a parallel and equally prolonged decrease in the cellular level of alkylacyl-GPC were observed after the addition of ionophore to intact platelets. The addition of EGTA reversed the effect of ionophore, thus permitting reacylation of lyso-PAF. In contrast, only a transient change in the level of lyso-PAF and alkylacyl-GPC was evoked by the addition of thrombin. Therefore we conclude that the inhibitory effect of Ca2+ on the deacetylation-reacylation of PAF-acether may have an important role in the regulation of its biosynthesis.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alam I., Smith J. B., Silver M. J. Metabolism of platelet-activating factor by blood platelets and plasma. Lipids. 1983 Aug;18(8):534–538. doi: 10.1007/BF02535393. [DOI] [PubMed] [Google Scholar]
- Albert D. H., Snyder F. Biosynthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet-activating factor) from 1-alkyl-2-acyl-sn-glycero-3-phosphocholine by rat alveolar macrophages. Phospholipase A2 and acetyltransferase activities during phagocytosis and ionophore stimulation. J Biol Chem. 1983 Jan 10;258(1):97–102. [PubMed] [Google Scholar]
- Ardlie N. G., Packham M. A., Mustard J. F. Adenosine diphosphate-induced platelet aggregation in suspensions of washed rabbit platelets. Br J Haematol. 1970 Jul;19(1):7–17. doi: 10.1111/j.1365-2141.1970.tb01596.x. [DOI] [PubMed] [Google Scholar]
- Barber A. J., Jamieson G. A. Isolation and characterization of plasma membranes from human blood platelets. J Biol Chem. 1970 Dec 10;245(23):6357–6365. [PubMed] [Google Scholar]
- Benveniste J., Chignard M., Le Couedic J. P., Vargaftig B. B. Biosynthesis of platelet-activating factor (PAF-ACETHER). II. Involvement of phospholipase A2 in the formation of PAF-ACETHER and lyso-PAF-ACETHER from rabbit platelets. Thromb Res. 1982 Mar 1;25(5):375–385. doi: 10.1016/0049-3848(82)90128-1. [DOI] [PubMed] [Google Scholar]
- Blank M. L., Lee T., Fitzgerald V., Snyder F. A specific acetylhydrolase for 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (a hypotensive and platelet-activating lipid). J Biol Chem. 1981 Jan 10;256(1):175–178. [PubMed] [Google Scholar]
- Chignard M., Le Couedic J. P., Vargaftig B. B., Benveniste J. Platelet-activating factor (PAF-acether) secretion from platelets: effect of aggregating agents. Br J Haematol. 1980 Nov;46(3):455–464. doi: 10.1111/j.1365-2141.1980.tb05993.x. [DOI] [PubMed] [Google Scholar]
- Gómez-Cambronero J., Iñarrea P., Alonso F., Sánchez Crespo M. The role of calcium ions in the process of acetyltransferase activation during the formation of platelet-activating factor (PAF-acether). Biochem J. 1984 Apr 15;219(2):419–424. doi: 10.1042/bj2190419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gómez-Cambronero J., Nieto M. L., Mato J. M., Sánchez-Crespo M. Modulation of lyso-platelet-activating factor: acetyl-CoA acetyltransferase from rat splenic microsomes. The role of calcium ions. Biochim Biophys Acta. 1985 Jun 30;845(3):511–515. doi: 10.1016/0167-4889(85)90218-6. [DOI] [PubMed] [Google Scholar]
- Johnson P. C., Ware J. A., Cliveden P. B., Smith M., Dvorak A. M., Salzman E. W. Measurement of ionized calcium in blood platelets with the photoprotein aequorin. Comparison with Quin 2. J Biol Chem. 1985 Feb 25;260(4):2069–2076. [PubMed] [Google Scholar]
- Kramer R. M., Patton G. M., Pritzker C. R., Deykin D. Metabolism of platelet-activating factor in human platelets. Transacylase-mediated synthesis of 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. J Biol Chem. 1984 Nov 10;259(21):13316–13320. [PubMed] [Google Scholar]
- Kröner E. E., Peskar B. A., Fischer H., Ferber E. Control of arachidonic acid accumulation in bone marrow-derived macrophages by acyltransferases. J Biol Chem. 1981 Apr 25;256(8):3690–3697. [PubMed] [Google Scholar]
- Lachachi H., Plantavid M., Simon M. F., Chap H., Braquet P., Douste-Blazy L. Inhibition of transmembrane movement and metabolism of platelet activating factor (PAF-acether) by a specific antagonist, BN 52021. Biochem Biophys Res Commun. 1985 Oct 30;132(2):460–466. doi: 10.1016/0006-291x(85)91156-8. [DOI] [PubMed] [Google Scholar]
- Ludwig J. C., Hoppens C. L., McManus L. M., Mott G. E., Pinckard R. N. Modulation of platelet-activating factor (PAF) synthesis and release from human polymorphonuclear leukocytes (PMN): role of extracellular albumin. Arch Biochem Biophys. 1985 Sep;241(2):337–347. doi: 10.1016/0003-9861(85)90555-7. [DOI] [PubMed] [Google Scholar]
- Malone B., Lee T., Snyder F. Inactivation of platelet activating factor by rabbit platelets. Lyso-platelet activating factor as a key intermediate with phosphatidylcholine as the source of arachidonic acid in its conversion to a tetraenoic acylated product. J Biol Chem. 1985 Feb 10;260(3):1531–1534. [PubMed] [Google Scholar]
- McKean M. L., Silver M. J. Phospholipid biosynthesis in human platelets. The acylation of lyso-platelet-activating factor. Biochem J. 1985 Feb 1;225(3):723–729. doi: 10.1042/bj2250723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ninio E., Mencia-Huerta J. M., Heymans F., Benveniste J. Biosynthesis of platelet-activating factor. I. Evidence for an acetyl-transferase activity in murine macrophages. Biochim Biophys Acta. 1982 Jan 15;710(1):23–31. doi: 10.1016/0005-2760(82)90185-0. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
- Pieroni G., Hanahan D. J. Metabolic behavior of acetyl glyceryl ether phosphorylcholine on interaction with rabbit platelets. Arch Biochem Biophys. 1983 Jul 15;224(2):485–493. doi: 10.1016/0003-9861(83)90236-9. [DOI] [PubMed] [Google Scholar]
- Robinson M., Blank M. L., Snyder F. Acylation of lysophospholipids by rabbit alveolar macrophages. Specificities of CoA-dependent and CoA-independent reactions. J Biol Chem. 1985 Jul 5;260(13):7889–7895. [PubMed] [Google Scholar]
- Robinson M., Snyder F. Metabolism of platelet-activating factor by rat alveolar macrophages: lyso-PAF as an obligatory intermediate in the formation of alkylarachidonoyl glycerophosphocholine species. Biochim Biophys Acta. 1985 Oct 23;837(1):52–56. doi: 10.1016/0005-2760(85)90084-0. [DOI] [PubMed] [Google Scholar]
- Snyder F. Chemical and biochemical aspects of platelet activating factor: a novel class of acetylated ether-linked choline-phospholipids. Med Res Rev. 1985 Jan-Mar;5(1):107–140. doi: 10.1002/med.2610050105. [DOI] [PubMed] [Google Scholar]
- Touqui L., Hatmi M., Vargaftig B. B. Human platelets stimulated by thrombin produce platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) when the degrading enzyme acetyl hydrolase is blocked. Biochem J. 1985 Aug 1;229(3):811–816. doi: 10.1042/bj2290811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Touqui L., Jacquemin C., Dumarey C., Vargaftig B. B. 1-O-alkyl-2-acyl-sn-glycero-3-phosphorylcholine is the precursor of platelet-activating factor in stimulated rabbit platelets. Evidence for an alkylacetyl-glycerophosphorylcholine cycle. Biochim Biophys Acta. 1985 Jan 9;833(1):111–118. doi: 10.1016/0005-2760(85)90258-9. [DOI] [PubMed] [Google Scholar]
- Touqui L., Jacquemin C., Vargaftig B. B. Conversion of 3H-PAF acether by rabbit platelets is independent from aggregation: evidences for a novel metabolite. Biochem Biophys Res Commun. 1983 Feb 10;110(3):890–893. doi: 10.1016/0006-291x(83)91045-8. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y., Pozzan T., Rink T. J. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature. 1982 Jan 7;295(5844):68–71. doi: 10.1038/295068a0. [DOI] [PubMed] [Google Scholar]
- Vargaftig B. B., Chignard M., Benveniste J., Lefort J., Wal F. Background and present status of research on platelet-activating factor (PAF-acether). Ann N Y Acad Sci. 1981;370:119–137. doi: 10.1111/j.1749-6632.1981.tb29727.x. [DOI] [PubMed] [Google Scholar]
