Abstract
The synthesis of two lysylfluoromethanes is described by an extension of the synthesis method of Rauber, Angliker, Walker & Shaw [(1986) Biochem. J. 239, 633-640]. Ala-Phe-Lys-CH2F was found to be an active-centre-directed inhibitor of plasmin and trypsin, as is the corresponding chloromethane. However, the rate of covalent-bond formation is about an order of magnitude lower at 25 degrees C for the fluoro derivative. It was, in addition, an extremely effective inactivator of cathepsin B at pH 5.4 and 6.4. The chemical reactivity of fluoromethanes was compared with that of chloromethanes as alkylators of GSH. At pH 7.4 and 37 degrees C, a fluoromethane has 1/500th the reactivity of a chloromethane. A comparison of the rates of reaction of the fluoromethane with cathepsin B and with GSH at pH 6.4 revealed an enhancement of 10(8)-fold for the alkylation of the enzyme, ascribable largely to a proximity effect.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
- Brubacher L. J., Bender M. L. The preparation and properties of trans-cinnamoyl-papain. J Am Chem Soc. 1966 Dec 20;88(24):5871–5880. doi: 10.1021/ja00976a032. [DOI] [PubMed] [Google Scholar]
- Coggins J. R., Kray W., Shaw E. Affinity labelling of proteinases with tryptic specificity by peptides with C-terminal lysine chloromethyl ketone. Biochem J. 1974 Mar;137(3):579–585. doi: 10.1042/bj1370579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
- Evans B., Shaw E. Inactivation of cathepsin B by active site-directed disulfide exchange. Application in covalent affinity chromatography. J Biol Chem. 1983 Sep 10;258(17):10227–10232. [PubMed] [Google Scholar]
- Green G. D., Shaw E. Thiobenzyl benzyloxycarbonyl-L-lysinate, substrate for a sensitive colorimetric assay for trypsin-like enzymes. Anal Biochem. 1979 Mar;93(2):223–226. doi: 10.1016/s0003-2697(79)80141-4. [DOI] [PubMed] [Google Scholar]
- Groskopf W. R., Hsieh B., Summaria L., Robbins K. C. Studies on the active center of human plasmin. The serine and histidine residues. J Biol Chem. 1969 Jan 25;244(2):359–365. [PubMed] [Google Scholar]
- Jameson G. W., Roberts D. V., Adams R. W., Kyle W. S., Elmore D. T. Determination of the operational molarity of solutions of bovine alpha-chymotrypsin, trypsin, thrombin and factor Xa by spectrofluorimetric titration. Biochem J. 1973 Jan;131(1):107–117. doi: 10.1042/bj1310107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KITZ R., WILSON I. B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem. 1962 Oct;237:3245–3249. [PubMed] [Google Scholar]
- Kettner C., Shaw E. D-Phe-Pro-ArgCH2C1-A selective affinity label for thrombin. Thromb Res. 1979;14(6):969–973. doi: 10.1016/0049-3848(79)90014-8. [DOI] [PubMed] [Google Scholar]
- Kettner C., Shaw E. Synthesis of peptides of arginine chloromethyl ketone. Selective inactivation of human plasma kallikrein. Biochemistry. 1978 Oct 31;17(22):4778–4784. doi: 10.1021/bi00615a027. [DOI] [PubMed] [Google Scholar]
- Markland F. S., Shaw E., Smith E. L. Identification of histidine 64 in the active site of subtilisin. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1440–1447. doi: 10.1073/pnas.61.4.1440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mort J. S., Recklies A. D., Poole A. R. Characterization of a thiol proteinase secreted by malignant human breast tumours. Biochim Biophys Acta. 1980 Jul 10;614(1):134–143. doi: 10.1016/0005-2744(80)90174-6. [DOI] [PubMed] [Google Scholar]
- ONG E. B., SHAW E., SCHOELLMANN G. THE IDENTIFICATION OF THE HISTIDINE RESIDUE AT THE ACTIVE CENTER OF CHYMOTRYPSIN. J Biol Chem. 1965 Feb;240:694–698. [PubMed] [Google Scholar]
- Rasnick D. Synthesis of peptide fluoromethyl ketones and the inhibition of human cathepsin B. Anal Biochem. 1985 Sep;149(2):461–465. doi: 10.1016/0003-2697(85)90598-6. [DOI] [PubMed] [Google Scholar]
- Rauber P., Angliker H., Walker B., Shaw E. The synthesis of peptidylfluoromethanes and their properties as inhibitors of serine proteinases and cysteine proteinases. Biochem J. 1986 Nov 1;239(3):633–640. doi: 10.1042/bj2390633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHOELLMANN G., SHAW E. A new method for labelling the active center of chymotrypsin. Biochem Biophys Res Commun. 1962 Feb 20;7:36–40. doi: 10.1016/0006-291x(62)90140-7. [DOI] [PubMed] [Google Scholar]
- SCHOELLMANN G., SHAW E. Direct evidence for the presence of histidine in the active center of chymotrypsin. Biochemistry. 1963 Mar-Apr;2:252–255. doi: 10.1021/bi00902a008. [DOI] [PubMed] [Google Scholar]
- Shaw E., Kettner C. The specificity of cathepsin B. Acta Biol Med Ger. 1981;40(10-11):1503–1511. [PubMed] [Google Scholar]
- Shaw E., Ruscica J. The reactivity of His-57 in chymotrypsin to alkylation. Arch Biochem Biophys. 1971 Aug;145(2):484–489. doi: 10.1016/s0003-9861(71)80008-5. [DOI] [PubMed] [Google Scholar]
- Shaw E., Springhorn S. Identification of the histidine residue at the active center of trypsin labelled by TLCK. Biochem Biophys Res Commun. 1967 May 5;27(3):391–397. doi: 10.1016/s0006-291x(67)80112-8. [DOI] [PubMed] [Google Scholar]
- Whitaker J. R., Perez-Villase ñor J. Chemical modification of papain. I. Reaction with the chloromethyl ketones of phenylalanine and lysine and with phenylmethyl-sulfonyl fluoride. Arch Biochem Biophys. 1968 Mar 20;124(1):70–78. doi: 10.1016/0003-9861(68)90304-4. [DOI] [PubMed] [Google Scholar]
