Abstract
Electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF-Q oxidoreductase) catalyses the re-oxidation of reduced electron-transfer flavoprotein (ETF) with ubiquinone-1 (Q-1) as the electron acceptor. A kinetic assay for the enzyme was devised in which glutaryl-CoA in the presence of glutaryl-CoA dehydrogenase was used to reduce ETFox. and the reduction of Q-1 was monitored at 275 nm. The partial reactions involved in the overall assay system were examined. Glutaryl-CoA dehydrogenase catalyses the rapid reduction of ETFox. to the anionic semiquinone (ETF.-), but reduces ETF.- to the fully reduced form (ETFhq) at a rate that is about 6-fold lower. ETF.-, but not ETFhq, is directly re-oxidized by Q-1 at a rate that, depending on the steady-state concentration of ETF.-, may contribute significantly to the overall reaction. ETF-Q oxidoreductase catalyses rapid disproportionation of ETF.- with an equilibrium constant of about 1.0 at pH 7.8. In the presence of Q-1 it also catalyses the re-oxidation of ETFhq at a rate that is faster than that of the overall reaction. Rapid-scan experiments indicated the formation of ETF.-, but its fractional concentration in the early stages of the re-oxidation of ETFhq is low. The data indicate that the re-oxidation of ETFhq proceeds at a rate that is adequate to account for the overall rate of electron transfer from glutaryl-CoA to Q-1. An unusual property of ETF-Q oxidoreductase seems to be that it not only catalyses the re-oxidation of the reduced forms of ETF but also facilitates the complete reduction of ETFox. to ETFhq by disproportionation of the radical.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beckmann J. D., Frerman F. E. Electron-transfer flavoprotein-ubiquinone oxidoreductase from pig liver: purification and molecular, redox, and catalytic properties. Biochemistry. 1985 Jul 16;24(15):3913–3921. doi: 10.1021/bi00336a016. [DOI] [PubMed] [Google Scholar]
- Beckmann J. D., Frerman F. E., McKean M. C. Inhibition of general acyl CoA dehydrogenase by electron transfer flavoprotein semiquinone. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1290–1294. doi: 10.1016/s0006-291x(81)80151-9. [DOI] [PubMed] [Google Scholar]
- Beckmann J. D., Frerman F. E. Reaction of electron-transfer flavoprotein with electron-transfer flavoprotein-ubiquinone oxidoreductase. Biochemistry. 1985 Jul 16;24(15):3922–3925. doi: 10.1021/bi00336a017. [DOI] [PubMed] [Google Scholar]
- Beckmann J. D., Frerman F. E. The effects of pH, ionic strength, and chemical modifications on the reaction of electron transfer flavoprotein with an acyl coenzyme A dehydrogenase. J Biol Chem. 1983 Jun 25;258(12):7563–7569. [PubMed] [Google Scholar]
- Beinert H. Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal Biochem. 1983 Jun;131(2):373–378. doi: 10.1016/0003-2697(83)90186-0. [DOI] [PubMed] [Google Scholar]
- FRISELL W. R., MACKENZIE C. G. Separation and purification of sarcosine dehydrogenase and dimethylglycine dehydrogenase. J Biol Chem. 1962 Jan;237:94–98. [PubMed] [Google Scholar]
- Frerman F. E., Goodman S. I. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein:ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4517–4520. doi: 10.1073/pnas.82.13.4517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghisla S., Massey V., Lhoste J. M., Mayhew S. G. Fluorescence and optical characteristics of reduced flavines and flavoproteins. Biochemistry. 1974 Jan 29;13(3):589–597. doi: 10.1021/bi00700a029. [DOI] [PubMed] [Google Scholar]
- Gorelick R. J., Mizzer J. P., Thorpe C. Purification and properties of electron-transferring flavoprotein from pig kidney. Biochemistry. 1982 Dec 21;21(26):6936–6942. doi: 10.1021/bi00269a049. [DOI] [PubMed] [Google Scholar]
- Hall C. L., Lambeth J. D. Studies on electron transfer from general acyl-CoA dehydrogenase to electron transfer flavoprotein. J Biol Chem. 1980 Apr 25;255(8):3591–3595. [PubMed] [Google Scholar]
- Husain M., Stankovich M. T., Fox B. G. Measurement of the oxidation-reduction potentials for one-electron and two-electron reduction of electron-transfer flavoprotein from pig liver. Biochem J. 1984 May 1;219(3):1043–1047. doi: 10.1042/bj2191043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husain M., Steenkamp D. J. Electron transfer flavoprotein from pig liver mitochondria. A simple purification and re-evaluation of some of the molecular properties. Biochem J. 1983 Feb 1;209(2):541–545. doi: 10.1042/bj2090541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Husain M., Steenkamp D. J. Partial purification and characterization of glutaryl-coenzyme A dehydrogenase, electron transfer flavoprotein, and electron transfer flavoprotein-Q oxidoreductase from Paracoccus denitrificans. J Bacteriol. 1985 Aug;163(2):709–715. doi: 10.1128/jb.163.2.709-715.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikeda Y., Dabrowski C., Tanaka K. Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. Identification of a new 2-methyl branched chain acyl-CoA dehydrogenase. J Biol Chem. 1983 Jan 25;258(2):1066–1076. [PubMed] [Google Scholar]
- Morris R. G., Saliman G., Dunn M. F. Evidence that hydride transfer precedes proton transfer in the liver alcohol dehydrogenase catalyzed reduction of trans-4-(N,N-dimethylamino)cinnamaldehyde. Biochemistry. 1980 Feb 19;19(4):725–731. doi: 10.1021/bi00545a018. [DOI] [PubMed] [Google Scholar]
- Ruzicka F. J., Beinert H. A new iron-sulfur flavoprotein of the respiratory chain. A component of the fatty acid beta oxidation pathway. J Biol Chem. 1977 Dec 10;252(23):8440–8445. [PubMed] [Google Scholar]
- Ruzicka F. J., Beinert H. A new membrane iron-sulfur flavoprotein of the mitochondrial electron transfer system. The entrance point of the fatty acyl dehydrogenation pathway? Biochem Biophys Res Commun. 1975 Sep 16;66(2):622–631. doi: 10.1016/0006-291x(75)90555-0. [DOI] [PubMed] [Google Scholar]
- Steenkamp D. J., Husain M. The effect of tetrahydrofolate on the reduction of electron transfer flavoprotein by sarcosine and dimethylglycine dehydrogenases. Biochem J. 1982 Jun 1;203(3):707–715. doi: 10.1042/bj2030707. [DOI] [PMC free article] [PubMed] [Google Scholar]