Abstract
The hormone-stimulated 'dense-vesicle' cyclic AMP phosphodiesterase was solubilized as a proteolytically 'clipped' species, and purified to apparent homogeneity from rat liver with a 2000-3000-fold purification and a 13-18% yield. It appeared to be a dimer (Mr 112,000), of two Mr-57,000 subunits. Solubilization of either a liver or a hepatocyte membrane fraction, with sodium cholate in the presence of the protein inhibitor benzamidine, identified three protein bands which could be immunoprecipitated by a polyclonal antibody raised against the pure enzyme. The major band at Mr 62,000 is suggested to be the native 'dense-vesicle' enzyme, having a Mr-5000 extension which serves to anchor this enzyme to the membrane and which is cleaved off during proteolytic solubilization; the Mr-200,000 band is an aggregate of the Mr-62,000 species, and the Mr-63,000 species is possibly a precursor. The purified 'clipped' enzyme hydrolysed cyclic AMP with kinetics indicative of apparent negative co-operativity, with a Hill coefficient (h) of 0.43 and limiting kinetic constants of Km1 = 0.3 +/- 0.05 microM, Km2 = 29 +/- 6 microM, Vmax.1 = 0.114 +/- 0.015 unit/mg of protein and Vmax.2 = 0.633 +/- 0.054 unit/mg of protein. It hydrolysed cyclic GMP with Michaelis kinetics, Km = 10 +/- 1 microM and Vmax. = 4.1 +/- 0.2 units/mg of protein. Cyclic GMP was a potent inhibitor of cyclic AMP hydrolysis, with an IC50 (concn. giving 50% inhibition) of 0.20 +/- 0.01 microM-cyclic GMP when assayed at 0.1 microM-cyclic AMP. This enzyme was inhibited potently by several drugs known to exert positive inotropic effects on the heart, was extremely thermolabile, with a half-life of 4.5 +/- 0.5 min at 40 degrees C, and was shown to be distinct from the rat liver insulin-stimulated peripheral-plasma-membrane cyclic AMP phosphodiesterase [Marchmont, Ayad & Houslay (1981) Biochem. J. 195, 645-652].
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beavo J. A., Hansen R. S., Harrison S. A., Hurwitz R. L., Martins T. J., Mumby M. C. Identification and properties of cyclic nucleotide phosphodiesterases. Mol Cell Endocrinol. 1982 Nov-Dec;28(3):387–410. doi: 10.1016/0303-7207(82)90135-6. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Bristol J. A., Evans D. B. Agents for the treatment of heart failure. Med Res Rev. 1983 Jul-Sep;3(3):259–287. doi: 10.1002/med.2610030304. [DOI] [PubMed] [Google Scholar]
- Bristol J. A., Sircar I., Moos W. H., Evans D. B., Weishaar R. E. Cardiotonic agents. 1. 4,5-Dihydro-6-[4-(1H-imidazol-1-yl)phenyl]-3 (2H)-pyridazinones: novel positive inotropic agents for the treatment of congestive heart failure. J Med Chem. 1984 Sep;27(9):1099–1101. doi: 10.1021/jm00375a001. [DOI] [PubMed] [Google Scholar]
- Cercek B., Houslay M. D. Submitochondrial localization and asymmetric disposition of two peripheral cyclic nucleotide phosphodiesterases. Biochem J. 1982 Oct 1;207(1):123–132. doi: 10.1042/bj2070123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
- Davies G. E. Antibronchoconstrictor activity of two new phosphodiesterase inhibitors, a triazolopyrazine (ICI 58 301) and a triazolopyrimidine (ICI 63 197). J Pharm Pharmacol. 1973 Sep;25(9):681–689. doi: 10.1111/j.2042-7158.1973.tb10048.x. [DOI] [PubMed] [Google Scholar]
- Endoh M., Yamashita S., Taira N. Positive inotropic effect of amrinone in relation to cyclic nucleotide metabolism in the canine ventricular muscle. J Pharmacol Exp Ther. 1982 Jun;221(3):775–783. [PubMed] [Google Scholar]
- Farah A. E., Alousi A. A., Schwarz R. P., Jr Positive inotropic agents. Annu Rev Pharmacol Toxicol. 1984;24:275–328. doi: 10.1146/annurev.pa.24.040184.001423. [DOI] [PubMed] [Google Scholar]
- Francis S. H., Kono T. Hormone-sensitive cAMP phosphodiesterase in liver and fat cells. Mol Cell Biochem. 1982 Feb 5;42(2):109–116. doi: 10.1007/BF00222697. [DOI] [PubMed] [Google Scholar]
- GOA J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–222. doi: 10.3109/00365515309094189. [DOI] [PubMed] [Google Scholar]
- Heyworth C. M., Grey A. M., Wilson S. R., Hanski E., Houslay M. D. The action of islet activating protein (pertussis toxin) on insulin's ability to inhibit adenylate cyclase and activate cyclic AMP phosphodiesterases in hepatocytes. Biochem J. 1986 Apr 1;235(1):145–149. doi: 10.1042/bj2350145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heyworth C. M., Wallace A. V., Houslay M. D. Insulin and glucagon regulate the activation of two distinct membrane-bound cyclic AMP phosphodiesterases in hepatocytes. Biochem J. 1983 Jul 15;214(1):99–110. doi: 10.1042/bj2140099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heyworth C. M., Wallace A. V., Wilson S. R., Houslay M. D. An assessment of the ability of insulin-stimulated cyclic AMP phosphodiesterase to decrease hepatocyte intracellular cyclic AMP concentrations. Biochem J. 1984 Aug 15;222(1):183–187. doi: 10.1042/bj2220183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Houslay M. D. Insulin, glucagon and the receptor-mediated control of cyclic AMP concentrations in liver. Twenty-second Colworth medal lecture. Biochem Soc Trans. 1986 Apr;14(2):183–193. doi: 10.1042/bst0140183. [DOI] [PubMed] [Google Scholar]
- Kariya T., Wille L. J., Dage R. C. Biochemical studies on the mechanism of cardiotonic activity of MDL 17,043. J Cardiovasc Pharmacol. 1982 May-Jun;4(3):509–514. doi: 10.1097/00005344-198205000-00024. [DOI] [PubMed] [Google Scholar]
- Kenny A. J., Booth A. G. Microvilli: their ultrastructure, enzymology and molecular organization. Essays Biochem. 1978;14:1–44. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Loten E. G., Assimacopoulos-Jeannet F. D., Exton J. H., Park C. R. Stimulation of a low Km phosphodiesterase from liver by insulin and glucagon. J Biol Chem. 1978 Feb 10;253(3):746–757. [PubMed] [Google Scholar]
- Loten E. G. Detergent solubilisation of rat liver particulate cyclic AMP phosphodiesterase. Int J Biochem. 1983;15(7):923–928. doi: 10.1016/0020-711x(83)90168-4. [DOI] [PubMed] [Google Scholar]
- Loten E. G., Francis S. H., Corbin J. D. Proteolytic solubilization and modification of hormone-sensitive cyclic nucleotide phosphodiesterase. J Biol Chem. 1980 Aug 25;255(16):7838–7844. [PubMed] [Google Scholar]
- Major G. N., Loten E. G., Sneyd J. G. Partial purification of protease-solubilised low Km cyclic nucleotide phosphodiesterase from liver. Int J Biochem. 1983;15(2):217–223. doi: 10.1016/0020-711x(83)90068-x. [DOI] [PubMed] [Google Scholar]
- Marchmont R. J., Ayad S. R., Houslay M. D. Purification and properties of the insulin-stimulated cyclic AMP phosphodiesterase from rat liver plasma membranes. Biochem J. 1981 Jun 1;195(3):645–652. doi: 10.1042/bj1950645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchmont R. J., Houslay M. D. A peripheral and an intrinsic enzyme constitute the cyclic AMP phosphodiesterase activity of rat liver plasma membranes. Biochem J. 1980 May 1;187(2):381–392. doi: 10.1042/bj1870381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchmont R. J., Houslay M. D. Insulin trigger, cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase. Nature. 1980 Aug 28;286(5776):904–906. doi: 10.1038/286904a0. [DOI] [PubMed] [Google Scholar]
- Polson J. B., Krzanowski J. J., Anderson W. H., Fitzpatrick D. F., Hwang D. P., Szentivanyi A. Analysis of the relationship between pharmacological inhibition of cyclic nucleotide phosphodiesterase and relaxation of canine tracheal smooth muscle. Biochem Pharmacol. 1979 Apr 15;28(8):1391–1395. doi: 10.1016/0006-2952(79)90442-8. [DOI] [PubMed] [Google Scholar]
- Pyne N. J., Cooper M. E., Houslay M. D. Identification and characterization of both the cytosolic and particulate forms of cyclic GMP-stimulated cyclic AMP phosphodiesterase from rat liver. Biochem J. 1986 Mar 1;234(2):325–334. doi: 10.1042/bj2340325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saltiel A. R., Steigerwalt R. W. Purification of putative insulin-sensitive cAMP phosphodiesterase or its catalytic domain from rat adipocytes. Diabetes. 1986 Jun;35(6):698–704. doi: 10.2337/diab.35.6.698. [DOI] [PubMed] [Google Scholar]
- Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem. 1978 May;86(1):142–146. doi: 10.1016/0003-2697(78)90327-5. [DOI] [PubMed] [Google Scholar]
- Takemoto D. J., Hansen J., Takemoto L. J., Houslay M. D. Peptide mapping of multiple forms of cyclic nucleotide phosphodiesterase. J Biol Chem. 1982 Dec 25;257(24):14597–14599. [PubMed] [Google Scholar]
- Thompson W. J., Appleman M. M. Multiple cyclic nucleotide phosphodiesterase activities from rat brain. Biochemistry. 1971 Jan 19;10(2):311–316. [PubMed] [Google Scholar]
- Wallace A. V., Heyworth C. M., Houslay M. D. N6-(Phenylisopropyl)adenosine prevents glucagon both blocking insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase and uncoupling hormonal stimulation of adenylate cyclase activity in hepatocytes. Biochem J. 1984 Aug 15;222(1):177–182. doi: 10.1042/bj2220177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weishaar R. E., Cain M. H., Bristol J. A. A new generation of phosphodiesterase inhibitors: multiple molecular forms of phosphodiesterase and the potential for drug selectivity. J Med Chem. 1985 May;28(5):537–545. doi: 10.1021/jm50001a001. [DOI] [PubMed] [Google Scholar]
- Whitson R. H., Appleman M. M. Purification, characterization and production of rabbit antibodies to rat liver particulate, high-affinity, cyclic AMP phosphodiesterase. Biochim Biophys Acta. 1982 Feb 2;714(2):279–291. doi: 10.1016/0304-4165(82)90335-x. [DOI] [PubMed] [Google Scholar]
- Wilson S. R., Houslay M. D. Proteolytic activation and solubilization of endoplasmic-reticulum cyclic AMP phosphodiesterase activity. Biochem J. 1983 Jul 1;213(1):99–105. doi: 10.1042/bj2130099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson S. R., Wallace A. V., Houslay M. D. Insulin activates the plasma-membrane and dense-vesicle cyclic AMP phosphodiesterase in hepatocytes by distinct routes. Biochem J. 1983 Oct 15;216(1):245–248. doi: 10.1042/bj2160245. [DOI] [PMC free article] [PubMed] [Google Scholar]



