Abstract
Results presented in this paper show that removal of white-cell contaminations from human red blood cells by filtration through cellulose [Beutler, West & Blume (1976) J. Lab. Clin. Med. 88, 328-333] is a necessity whenever red cells are incubated at elevated temperatures or haemolysed after density separation. Omission of this precaution results in proteolysis of sialoglycoproteins in membranes from less-dense (young), but not dense (old), subpopulations. This proteolytic damage occurs during haemolysis of the cytoplasmic domain of glycophorin. A different type of proteolysis occurs if white-cell-contaminated red cells are incubated in the absence of glucose at elevated temperatures. Red cells release sialoglycopeptides. This process is stimulated by Ca2+ ions and is accompanied by the release of vesicles that differ from spectrin-free vesicles [Lutz, Liu & Palek (1977) J. Cell Biol. 73, 548-560]. This sialoglycopeptide release is dependent on white-cell contamination and is not required for the release of spectrin-free vesicles.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan D., Billah M. M., Finean J. B., Michell R. H. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular (Ca2+). Nature. 1976 May 6;261(5555):58–60. doi: 10.1038/261058a0. [DOI] [PubMed] [Google Scholar]
- Anderson D. R., Davis J. L., Carraway K. L. Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase, and a membrane-bound protease. J Biol Chem. 1977 Oct 10;252(19):6617–6623. [PubMed] [Google Scholar]
- Beutler E., West C., Blume K. G. The removal of leukocytes and platelets from whole blood. J Lab Clin Med. 1976 Aug;88(2):328–333. [PubMed] [Google Scholar]
- Birchmeier W., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol. 1977 Jun;73(3):647–659. doi: 10.1083/jcb.73.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bocci V., Pessina G. P., Paulesu L. Studies of factors regulating the ageing of human erythrocytes-IV. Influence of physiological proteinase inhibitors. Int J Biochem. 1981;13(12):1257–1260. doi: 10.1016/0020-711x(81)90072-0. [DOI] [PubMed] [Google Scholar]
- Brovelli A., Pallavicini G., Sinigaglia F., Balduini C. L., Balduini C. Identification of a sialoglycopeptide released by self-digestion from human erythrocyte membranes. Biochem J. 1976 Aug 15;158(2):497–500. doi: 10.1042/bj1580497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brovelli A., Seppi C., Pallavicini G., Balduini C. Membrane processes during 'in vivo' aging of human erythrocytes. Biomed Biochim Acta. 1983;42(11-12):S122–S126. [PubMed] [Google Scholar]
- Brovelli A., Suhail M., Pallavicini G., Sinigaglia F., Balduini C. Self-digestion of human erythrocyte membranes. Role of adenosine triphosphate and glutathione. Biochem J. 1977 May 15;164(2):469–472. doi: 10.1042/bj1640469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Busch D., Pelz K. Erythrocytenisolierung aus Blut mit Baumwolle. Klin Wochenschr. 1966 Aug 15;44(16):983–984. doi: 10.1007/BF01711475. [DOI] [PubMed] [Google Scholar]
- Clark M. R., Shohet S. B. Red cell senescence. Clin Haematol. 1985 Feb;14(1):223–257. [PubMed] [Google Scholar]
- Cohen N. S., Ekholm J. E., Luthra M. G., Hanahan D. J. Biochemical characterization of density-separated human erythrocytes. Biochim Biophys Acta. 1976 Jan 21;419(2):229–242. doi: 10.1016/0005-2736(76)90349-7. [DOI] [PubMed] [Google Scholar]
- DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
- Danon D., Goldstein L., Marikovsky Y., Skutelsky E. Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res. 1972 Mar;38(5):500–510. doi: 10.1016/0022-5320(72)90087-1. [DOI] [PubMed] [Google Scholar]
- ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Fehr J., Knob M. Comparison of red cell creatine level and reticulocyte count in appraising the severity of hemolytic processes. Blood. 1979 May;53(5):966–976. [PubMed] [Google Scholar]
- Feo C., Mohandas N. Clarification of role of ATP in red-cell morphology and function. Nature. 1977 Jan 13;265(5590):166–168. doi: 10.1038/265166a0. [DOI] [PubMed] [Google Scholar]
- Féo C. J., Leblond P. F. The discocyte-echinocyte transformation: comparison of normal and ATP-enriched human erythrocytes. Blood. 1974 Nov;44(5):639–647. [PubMed] [Google Scholar]
- GRIFFITHS W. J. THE DETERMINATION OF CREATINE IN BODY FLUIDS AND MUSCLE, AND OF PHOSPHOCREATINE IN MUSCLE, USING THE AUTOANALYZER. Clin Chim Acta. 1964 Mar;9:210–213. doi: 10.1016/0009-8981(64)90096-8. [DOI] [PubMed] [Google Scholar]
- Gattegno L., Bladier D., Garnier M., Cornillot P. Changes in carbohydrate content of surface membranes of human erythrocytes during ageing. Carbohydr Res. 1976 Dec;52:197–208. doi: 10.1016/s0008-6215(00)85960-1. [DOI] [PubMed] [Google Scholar]
- Gattegno L., Perret G., Fabia F., Cornillot P. Decrease of carbohydrate in membrane glycoproteins during human erythrocyte ageing in vivo. Mech Ageing Dev. 1981 Jul;16(3):205–219. doi: 10.1016/0047-6374(81)90097-x. [DOI] [PubMed] [Google Scholar]
- Golovtchenko-Matsumoto A. M., Matsumoto I., Osawa T. Degradation of band-3 glycoprotein in vitro by a protease isolated from human erythrocyte membrane. Eur J Biochem. 1982 Jan;121(2):463–467. doi: 10.1111/j.1432-1033.1982.tb05810.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Legendre J. L., Jones H. P. Identification of calcium-dependent proteolytic activity in human polymorphonuclear leukocytes. J Reticuloendothel Soc. 1983 Aug;34(2):89–97. [PubMed] [Google Scholar]
- Lorand L., Bjerrum O. J., Hawkins M., Lowe-Krentz L., Siefring G. E., Jr Degradation of transmembrane proteins in Ca2+-enriched human erythrocytes. An immunochemical study. J Biol Chem. 1983 Apr 25;258(8):5300–5305. [PubMed] [Google Scholar]
- Luner S. J., Szklarek D., Knox R. J., Seaman G. V., Josefowicz J. Y., Ware B. R. Red cell charge is not a function of cell age. Nature. 1977 Oct 20;269(5630):719–721. doi: 10.1038/269719a0. [DOI] [PubMed] [Google Scholar]
- Lutz H. U., Fehr J. Total sialic acid content of glycophorins during senescence of human red blood cells. J Biol Chem. 1979 Nov 25;254(22):11177–11180. [PubMed] [Google Scholar]
- Lutz H. U., Flepp R., Stringaro-Wipf G. Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein, the major integral membrane protein of human red blood cells. J Immunol. 1984 Nov;133(5):2610–2618. [PubMed] [Google Scholar]
- Lutz H. U., Liu S. C., Palek J. Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles. J Cell Biol. 1977 Jun;73(3):548–560. doi: 10.1083/jcb.73.3.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lutz H. U. Vesicles isolated from ATP-depleted erythrocytes and out of thrombocyte-rich plasma. J Supramol Struct. 1978;8(3):375–389. doi: 10.1002/jss.400080314. [DOI] [PubMed] [Google Scholar]
- Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miyahara K., Spiro M. J. Nonuniform loss of membrane glycoconjugates during in vivo aging of human erythrocytes: studies of normal and diabetic red cell saccharides. Arch Biochem Biophys. 1984 Jul;232(1):310–322. doi: 10.1016/0003-9861(84)90547-2. [DOI] [PubMed] [Google Scholar]
- Murphy J. R. Influence of temperature and method of centrifugation on the separation of erythrocytes. J Lab Clin Med. 1973 Aug;82(2):334–341. [PubMed] [Google Scholar]
- Müller H., Schmidt U., Lutz H. U. On the mechanism of vesicle release from ATP-depleted human red blood cells. Biochim Biophys Acta. 1981 Dec 7;649(2):462–470. doi: 10.1016/0005-2736(81)90437-5. [DOI] [PubMed] [Google Scholar]
- NAKAO M., NAKAO T., YAMAZOE S. Adenosine triphosphate and maintenance of shape of the human red cells. Nature. 1960 Sep 10;187:945–946. doi: 10.1038/187945a0. [DOI] [PubMed] [Google Scholar]
- Nakato M., Nakayama T., Kankura T. A new method for separation of human blood components. Nat New Biol. 1973 Nov 21;246(151):94–94. doi: 10.1038/newbio246094a0. [DOI] [PubMed] [Google Scholar]
- Palek J., Liu S. C., Snyder L. M. Metabolic dependence of protein arrangement in human erythrocyte membranes. I. Analysis of spectrin-rich complexes in ATP-depleted red cells. Blood. 1978 Mar;51(3):385–395. [PubMed] [Google Scholar]
- Pessina G. P., Skiftas S. Studies of factors regulating the ageing of human erythrocytes--V. The role of vesiculation in the loss of membrane-bound sialic acid. Int J Biochem. 1983;15(3):277–279. doi: 10.1016/0020-711x(83)90090-3. [DOI] [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., Salamino F., Sparatore B., Michetti M., Benatti U., Morelli A., De Flora A. Identification of proteolytic activities in the cytosolic compartment of mature human erythrocytes. Eur J Biochem. 1980 Sep;110(2):421–430. doi: 10.1111/j.1432-1033.1980.tb04883.x. [DOI] [PubMed] [Google Scholar]
- Pontremoli S., Melloni E., Sparatore B., Michetti M., Horecker B. L. A dual role for the Ca2+-requiring proteinase in the degradation of hemoglobin by erythrocyte membrane proteinases. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6714–6717. doi: 10.1073/pnas.81.21.6714. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pontremoli S., Sparatore B., Salamino F., Michetti M., Sacco O., Melloni E. Reversible activation of human neutrophil calpain promoted by interaction with plasma membranes. Biochem Int. 1985 Jul;11(1):35–44. [PubMed] [Google Scholar]
- Schweizer E., Angst W., Lutz H. U. Glycoprotein topology on intact human red blood cells reevaluated by cross-linking following amino group supplementation. Biochemistry. 1982 Dec 21;21(26):6807–6818. doi: 10.1021/bi00269a029. [DOI] [PubMed] [Google Scholar]
- Seaman G. V., Knox R. J., Nordt F. J., Regan D. H. Red cell aging. I. Surface charge density and sialic acid content of density-fractionated human erythrocytes. Blood. 1977 Dec;50(6):1001–1011. [PubMed] [Google Scholar]
- Shapiro D. L., Marchesi V. T. Phosphorylation in membranes of intact human erythrocytes. J Biol Chem. 1977 Jan 25;252(2):508–517. [PubMed] [Google Scholar]
- Sheetz M. P., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. J Cell Biol. 1977 Jun;73(3):638–646. doi: 10.1083/jcb.73.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siefring G. E., Jr, Apostol A. B., Velasco P. T., Lorand L. Enzymatic basis for the Ca2+-induced cross-linking of membrane proteins in intact human erythrocytes. Biochemistry. 1978 Jun 27;17(13):2598–2604. doi: 10.1021/bi00606a022. [DOI] [PubMed] [Google Scholar]
- Steck T. L., Fairbanks G., Wallach D. F. Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection. Biochemistry. 1971 Jun 22;10(13):2617–2624. doi: 10.1021/bi00789a031. [DOI] [PubMed] [Google Scholar]
- Steck T. L., Ramos B., Strapazon E. Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry. 1976 Mar 9;15(5):1153–1161. doi: 10.1021/bi00650a030. [DOI] [PubMed] [Google Scholar]
- Triplett R. B., Carraway K. L. Proteolytic digestion of erythrocytes, resealed ghosts, and isolated membranes. Biochemistry. 1972 Jul 18;11(15):2897–2903. doi: 10.1021/bi00765a024. [DOI] [PubMed] [Google Scholar]




