Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Feb 15;242(1):115–121. doi: 10.1042/bj2420115

Re-evaluation of the structural integrity of red-cell glycoproteins during aging in vivo and nutrient deprivation.

A Brovelli, C Seppi, A Bardoni, C Balduini, H U Lutz
PMCID: PMC1147672  PMID: 3593232

Abstract

Results presented in this paper show that removal of white-cell contaminations from human red blood cells by filtration through cellulose [Beutler, West & Blume (1976) J. Lab. Clin. Med. 88, 328-333] is a necessity whenever red cells are incubated at elevated temperatures or haemolysed after density separation. Omission of this precaution results in proteolysis of sialoglycoproteins in membranes from less-dense (young), but not dense (old), subpopulations. This proteolytic damage occurs during haemolysis of the cytoplasmic domain of glycophorin. A different type of proteolysis occurs if white-cell-contaminated red cells are incubated in the absence of glucose at elevated temperatures. Red cells release sialoglycopeptides. This process is stimulated by Ca2+ ions and is accompanied by the release of vesicles that differ from spectrin-free vesicles [Lutz, Liu & Palek (1977) J. Cell Biol. 73, 548-560]. This sialoglycopeptide release is dependent on white-cell contamination and is not required for the release of spectrin-free vesicles.

Full text

PDF
115

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Billah M. M., Finean J. B., Michell R. H. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular (Ca2+). Nature. 1976 May 6;261(5555):58–60. doi: 10.1038/261058a0. [DOI] [PubMed] [Google Scholar]
  2. Anderson D. R., Davis J. L., Carraway K. L. Calcium-promoted changes of the human erythrocyte membrane. Involvement of spectrin, transglutaminase, and a membrane-bound protease. J Biol Chem. 1977 Oct 10;252(19):6617–6623. [PubMed] [Google Scholar]
  3. Beutler E., West C., Blume K. G. The removal of leukocytes and platelets from whole blood. J Lab Clin Med. 1976 Aug;88(2):328–333. [PubMed] [Google Scholar]
  4. Birchmeier W., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. II. The role of ATP. J Cell Biol. 1977 Jun;73(3):647–659. doi: 10.1083/jcb.73.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bocci V., Pessina G. P., Paulesu L. Studies of factors regulating the ageing of human erythrocytes-IV. Influence of physiological proteinase inhibitors. Int J Biochem. 1981;13(12):1257–1260. doi: 10.1016/0020-711x(81)90072-0. [DOI] [PubMed] [Google Scholar]
  6. Brovelli A., Pallavicini G., Sinigaglia F., Balduini C. L., Balduini C. Identification of a sialoglycopeptide released by self-digestion from human erythrocyte membranes. Biochem J. 1976 Aug 15;158(2):497–500. doi: 10.1042/bj1580497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brovelli A., Seppi C., Pallavicini G., Balduini C. Membrane processes during 'in vivo' aging of human erythrocytes. Biomed Biochim Acta. 1983;42(11-12):S122–S126. [PubMed] [Google Scholar]
  8. Brovelli A., Suhail M., Pallavicini G., Sinigaglia F., Balduini C. Self-digestion of human erythrocyte membranes. Role of adenosine triphosphate and glutathione. Biochem J. 1977 May 15;164(2):469–472. doi: 10.1042/bj1640469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Busch D., Pelz K. Erythrocytenisolierung aus Blut mit Baumwolle. Klin Wochenschr. 1966 Aug 15;44(16):983–984. doi: 10.1007/BF01711475. [DOI] [PubMed] [Google Scholar]
  10. Clark M. R., Shohet S. B. Red cell senescence. Clin Haematol. 1985 Feb;14(1):223–257. [PubMed] [Google Scholar]
  11. Cohen N. S., Ekholm J. E., Luthra M. G., Hanahan D. J. Biochemical characterization of density-separated human erythrocytes. Biochim Biophys Acta. 1976 Jan 21;419(2):229–242. doi: 10.1016/0005-2736(76)90349-7. [DOI] [PubMed] [Google Scholar]
  12. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  13. Danon D., Goldstein L., Marikovsky Y., Skutelsky E. Use of cationized ferritin as a label of negative charges on cell surfaces. J Ultrastruct Res. 1972 Mar;38(5):500–510. doi: 10.1016/0022-5320(72)90087-1. [DOI] [PubMed] [Google Scholar]
  14. ELLMAN G. L., COURTNEY K. D., ANDRES V., Jr, FEATHER-STONE R. M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961 Jul;7:88–95. doi: 10.1016/0006-2952(61)90145-9. [DOI] [PubMed] [Google Scholar]
  15. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  16. Fehr J., Knob M. Comparison of red cell creatine level and reticulocyte count in appraising the severity of hemolytic processes. Blood. 1979 May;53(5):966–976. [PubMed] [Google Scholar]
  17. Feo C., Mohandas N. Clarification of role of ATP in red-cell morphology and function. Nature. 1977 Jan 13;265(5590):166–168. doi: 10.1038/265166a0. [DOI] [PubMed] [Google Scholar]
  18. Féo C. J., Leblond P. F. The discocyte-echinocyte transformation: comparison of normal and ATP-enriched human erythrocytes. Blood. 1974 Nov;44(5):639–647. [PubMed] [Google Scholar]
  19. GRIFFITHS W. J. THE DETERMINATION OF CREATINE IN BODY FLUIDS AND MUSCLE, AND OF PHOSPHOCREATINE IN MUSCLE, USING THE AUTOANALYZER. Clin Chim Acta. 1964 Mar;9:210–213. doi: 10.1016/0009-8981(64)90096-8. [DOI] [PubMed] [Google Scholar]
  20. Gattegno L., Bladier D., Garnier M., Cornillot P. Changes in carbohydrate content of surface membranes of human erythrocytes during ageing. Carbohydr Res. 1976 Dec;52:197–208. doi: 10.1016/s0008-6215(00)85960-1. [DOI] [PubMed] [Google Scholar]
  21. Gattegno L., Perret G., Fabia F., Cornillot P. Decrease of carbohydrate in membrane glycoproteins during human erythrocyte ageing in vivo. Mech Ageing Dev. 1981 Jul;16(3):205–219. doi: 10.1016/0047-6374(81)90097-x. [DOI] [PubMed] [Google Scholar]
  22. Golovtchenko-Matsumoto A. M., Matsumoto I., Osawa T. Degradation of band-3 glycoprotein in vitro by a protease isolated from human erythrocyte membrane. Eur J Biochem. 1982 Jan;121(2):463–467. doi: 10.1111/j.1432-1033.1982.tb05810.x. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Legendre J. L., Jones H. P. Identification of calcium-dependent proteolytic activity in human polymorphonuclear leukocytes. J Reticuloendothel Soc. 1983 Aug;34(2):89–97. [PubMed] [Google Scholar]
  26. Lorand L., Bjerrum O. J., Hawkins M., Lowe-Krentz L., Siefring G. E., Jr Degradation of transmembrane proteins in Ca2+-enriched human erythrocytes. An immunochemical study. J Biol Chem. 1983 Apr 25;258(8):5300–5305. [PubMed] [Google Scholar]
  27. Luner S. J., Szklarek D., Knox R. J., Seaman G. V., Josefowicz J. Y., Ware B. R. Red cell charge is not a function of cell age. Nature. 1977 Oct 20;269(5630):719–721. doi: 10.1038/269719a0. [DOI] [PubMed] [Google Scholar]
  28. Lutz H. U., Fehr J. Total sialic acid content of glycophorins during senescence of human red blood cells. J Biol Chem. 1979 Nov 25;254(22):11177–11180. [PubMed] [Google Scholar]
  29. Lutz H. U., Flepp R., Stringaro-Wipf G. Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein, the major integral membrane protein of human red blood cells. J Immunol. 1984 Nov;133(5):2610–2618. [PubMed] [Google Scholar]
  30. Lutz H. U., Liu S. C., Palek J. Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles. J Cell Biol. 1977 Jun;73(3):548–560. doi: 10.1083/jcb.73.3.548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lutz H. U. Vesicles isolated from ATP-depleted erythrocytes and out of thrombocyte-rich plasma. J Supramol Struct. 1978;8(3):375–389. doi: 10.1002/jss.400080314. [DOI] [PubMed] [Google Scholar]
  32. Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Miyahara K., Spiro M. J. Nonuniform loss of membrane glycoconjugates during in vivo aging of human erythrocytes: studies of normal and diabetic red cell saccharides. Arch Biochem Biophys. 1984 Jul;232(1):310–322. doi: 10.1016/0003-9861(84)90547-2. [DOI] [PubMed] [Google Scholar]
  34. Murphy J. R. Influence of temperature and method of centrifugation on the separation of erythrocytes. J Lab Clin Med. 1973 Aug;82(2):334–341. [PubMed] [Google Scholar]
  35. Müller H., Schmidt U., Lutz H. U. On the mechanism of vesicle release from ATP-depleted human red blood cells. Biochim Biophys Acta. 1981 Dec 7;649(2):462–470. doi: 10.1016/0005-2736(81)90437-5. [DOI] [PubMed] [Google Scholar]
  36. NAKAO M., NAKAO T., YAMAZOE S. Adenosine triphosphate and maintenance of shape of the human red cells. Nature. 1960 Sep 10;187:945–946. doi: 10.1038/187945a0. [DOI] [PubMed] [Google Scholar]
  37. Nakato M., Nakayama T., Kankura T. A new method for separation of human blood components. Nat New Biol. 1973 Nov 21;246(151):94–94. doi: 10.1038/newbio246094a0. [DOI] [PubMed] [Google Scholar]
  38. Palek J., Liu S. C., Snyder L. M. Metabolic dependence of protein arrangement in human erythrocyte membranes. I. Analysis of spectrin-rich complexes in ATP-depleted red cells. Blood. 1978 Mar;51(3):385–395. [PubMed] [Google Scholar]
  39. Pessina G. P., Skiftas S. Studies of factors regulating the ageing of human erythrocytes--V. The role of vesiculation in the loss of membrane-bound sialic acid. Int J Biochem. 1983;15(3):277–279. doi: 10.1016/0020-711x(83)90090-3. [DOI] [PubMed] [Google Scholar]
  40. Pontremoli S., Melloni E., Salamino F., Sparatore B., Michetti M., Benatti U., Morelli A., De Flora A. Identification of proteolytic activities in the cytosolic compartment of mature human erythrocytes. Eur J Biochem. 1980 Sep;110(2):421–430. doi: 10.1111/j.1432-1033.1980.tb04883.x. [DOI] [PubMed] [Google Scholar]
  41. Pontremoli S., Melloni E., Sparatore B., Michetti M., Horecker B. L. A dual role for the Ca2+-requiring proteinase in the degradation of hemoglobin by erythrocyte membrane proteinases. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6714–6717. doi: 10.1073/pnas.81.21.6714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pontremoli S., Sparatore B., Salamino F., Michetti M., Sacco O., Melloni E. Reversible activation of human neutrophil calpain promoted by interaction with plasma membranes. Biochem Int. 1985 Jul;11(1):35–44. [PubMed] [Google Scholar]
  43. Schweizer E., Angst W., Lutz H. U. Glycoprotein topology on intact human red blood cells reevaluated by cross-linking following amino group supplementation. Biochemistry. 1982 Dec 21;21(26):6807–6818. doi: 10.1021/bi00269a029. [DOI] [PubMed] [Google Scholar]
  44. Seaman G. V., Knox R. J., Nordt F. J., Regan D. H. Red cell aging. I. Surface charge density and sialic acid content of density-fractionated human erythrocytes. Blood. 1977 Dec;50(6):1001–1011. [PubMed] [Google Scholar]
  45. Shapiro D. L., Marchesi V. T. Phosphorylation in membranes of intact human erythrocytes. J Biol Chem. 1977 Jan 25;252(2):508–517. [PubMed] [Google Scholar]
  46. Sheetz M. P., Singer S. J. On the mechanism of ATP-induced shape changes in human erythrocyte membranes. I. The role of the spectrin complex. J Cell Biol. 1977 Jun;73(3):638–646. doi: 10.1083/jcb.73.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Siefring G. E., Jr, Apostol A. B., Velasco P. T., Lorand L. Enzymatic basis for the Ca2+-induced cross-linking of membrane proteins in intact human erythrocytes. Biochemistry. 1978 Jun 27;17(13):2598–2604. doi: 10.1021/bi00606a022. [DOI] [PubMed] [Google Scholar]
  48. Steck T. L., Fairbanks G., Wallach D. F. Disposition of the major proteins in the isolated erythrocyte membrane. Proteolytic dissection. Biochemistry. 1971 Jun 22;10(13):2617–2624. doi: 10.1021/bi00789a031. [DOI] [PubMed] [Google Scholar]
  49. Steck T. L., Ramos B., Strapazon E. Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane. Biochemistry. 1976 Mar 9;15(5):1153–1161. doi: 10.1021/bi00650a030. [DOI] [PubMed] [Google Scholar]
  50. Triplett R. B., Carraway K. L. Proteolytic digestion of erythrocytes, resealed ghosts, and isolated membranes. Biochemistry. 1972 Jul 18;11(15):2897–2903. doi: 10.1021/bi00765a024. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES