Abstract
Deoxyadenosine (dAdo) and deoxyguanosine (dGuo) decrease methionine synthesis from homocysteine in cultured lymphoblasts; because of the possible trapping of 5-methyltetrahydrofolate this could lead to decreased purine nucleotide synthesis. Since purine deoxynucleosides could also inhibit purine synthesis de novo at an early step not involving folate metabolism, we measured in azaserine-treated cells 5-amino-4-imidazolecarboxamide (Z-base)-dependent purine nucleotide synthesis using [14C]formate. In the T lymphoblasts, Z-base-dependent purine nucleotide synthesis was decreased 26% by 0.3 microM-dAdo, 21% by 1 microM-dGuo and 28% by 1 microM-adenosine dialdehyde, a potent S-adenosylhomocysteine hydrolase inhibitor; homocysteine fully reversed the inhibitions. The B lymphoblasts were considerably less sensitive to the deoxynucleoside-induced decrease in Z-base-dependent purine nucleotide synthesis, with 100 microM-dAdo required for significant inhibition and no inhibition by dGuo at this concentration; homocysteine partly reversed the inhibition by dAdo. The observed decrease in Z-base-dependent purine nucleotide synthesis could not be attributed either to dUMP depletion changing the folate pools or to decreased ATP availability because dUrd was without effect and during the experimental period the intracellular ATP concentration did not change significantly. Cells with 5,10-methylenetetrahydrofolate reductase deficiency were relatively resistant to inhibition of Z-base-dependent purine nucleotide synthesis by dAdo and adenosine dialdehyde. Our results suggest that deoxynucleosides decrease purine nucleotide synthesis by trapping 5-methyltetrahydrofolate.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bartel R. L., Borchardt R. T. Effects of adenosine dialdehyde on S-adenosylhomocysteine hydrolase and S-adenosylmethionine-dependent transmethylations in mouse L929 cells. Mol Pharmacol. 1984 May;25(3):418–424. [PubMed] [Google Scholar]
- Boss G. R. Cobalamin inactivation decreases purine and methionine synthesis in cultured lymphoblasts. J Clin Invest. 1985 Jul;76(1):213–218. doi: 10.1172/JCI111948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boss G. R., Erbe R. W. Decreased purine synthesis during amino acid starvation of human lymphoblasts. J Biol Chem. 1982 Apr 25;257(8):4242–4247. [PubMed] [Google Scholar]
- Boss G. R., Erbe R. W. Decreased rates of methionine synthesis by methylene tetrahydrofolate reductase-deficient fibroblasts and lymphoblasts. J Clin Invest. 1981 Jun;67(6):1659–1664. doi: 10.1172/JCI110202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boss G. R., Pilz R. B. Decreased methionine synthesis in purine nucleoside-treated T and B lymphoblasts and reversal by homocysteine. J Clin Invest. 1984 Oct;74(4):1262–1268. doi: 10.1172/JCI111536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boss G. R., Seegmiller J. E. Genetic defects in human purine and pyrimidine metabolism. Annu Rev Genet. 1982;16:297–328. doi: 10.1146/annurev.ge.16.120182.001501. [DOI] [PubMed] [Google Scholar]
- Chan T. S. Deoxyguanosine toxicity on lymphoid cells as a cause for immunosuppression in purine nucleoside phosphorylase deficiency. Cell. 1978 Jul;14(3):523–530. doi: 10.1016/0092-8674(78)90238-6. [DOI] [PubMed] [Google Scholar]
- Cohen A., Gudas L. J., Ammann A. J., Staal G. E., Martin D. W., Jr Deoxyguanosine triphosphate as a possible toxic metabolite in the immunodeficiency associated with purine nucleoside phosphorylase deficiency. J Clin Invest. 1978 May;61(5):1405–1409. doi: 10.1172/JCI109058. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erbe R. W. Genetic aspects of folate metabolism. Adv Hum Genet. 1979;9:293-354, 367-9. doi: 10.1007/978-1-4615-8276-2_5. [DOI] [PubMed] [Google Scholar]
- Giblett E. R., Ammann A. J., Wara D. W., Sandman R., Diamond L. K. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975 May 3;1(7914):1010–1013. doi: 10.1016/s0140-6736(75)91950-9. [DOI] [PubMed] [Google Scholar]
- Giblett E. R., Anderson J. E., Cohen F., Pollara B., Meuwissen H. J. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet. 1972 Nov 18;2(7786):1067–1069. doi: 10.1016/s0140-6736(72)92345-8. [DOI] [PubMed] [Google Scholar]
- Gudas L. J., Ullman B., Cohen A., Martin D. W., Jr Deoxyguanosine toxicity in a mouse T lymphoma: relationship to purine nucleoside phosphorylase-associated immune dysfunction. Cell. 1978 Jul;14(3):531–538. doi: 10.1016/0092-8674(78)90239-8. [DOI] [PubMed] [Google Scholar]
- Hershfield M. S. Apparent suicide inactivation of human lymphoblast S-adenosylhomocysteine hydrolase by 2'-deoxyadenosine and adenine arabinoside. A basis for direct toxic effects of analogs of adenosine. J Biol Chem. 1979 Jan 10;254(1):22–25. [PubMed] [Google Scholar]
- Hershfield M. S., Seegmiller J. E. Regulation of de novo purine biosynthesis in human lymphoblasts. Coordinate control of proximal (rate-determining) steps and the inosinic acid branch point. J Biol Chem. 1976 Dec 10;251(23):7348–7354. [PubMed] [Google Scholar]
- Hirschhorn R., Roegner-Maniscalco V., Kuritsky L., Rosen F. S. Bone marrow transplantation only partially restores purine metabolites to normal in adenosine deaminase-deficient patients. J Clin Invest. 1981 Dec;68(6):1387–1393. doi: 10.1172/JCI110389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman J. L. The rate of transmethylation in mouse liver as measured by trapping S-adenosylhomocysteine. Arch Biochem Biophys. 1980 Nov;205(1):132–135. doi: 10.1016/0003-9861(80)90091-0. [DOI] [PubMed] [Google Scholar]
- Holmes E. W., McDonald J. A., McCord J. M., Wyngaarden J. B., Kelley W. N. Human glutamine phosphoribosylpyrophosphate amidotransferase. Kinetic and regulatory properties. J Biol Chem. 1973 Jan 10;248(1):144–150. [PubMed] [Google Scholar]
- Hutton J. J., Wiginton D. A., Coleman M. S., Fuller S. A., Limouze S., Lampkin B. C. Biochemical and functional abnormalities in lymphocytes from an adenosine deaminase-deficient patient during enzyme replacement therapy. J Clin Invest. 1981 Aug;68(2):413–421. doi: 10.1172/JCI110270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kazmers I. S., Mitchell B. S., Dadonna P. E., Wotring L. L., Townsend L. B., Kelley W. N. Inhibition of purine nucleoside phosphorylase by 8-aminoguanosine: selective toxicity for T lymphoblasts. Science. 1981 Dec 4;214(4525):1137–1139. doi: 10.1126/science.6795718. [DOI] [PubMed] [Google Scholar]
- Kefford R. F., Helmer M. A., Fox R. M. S-adenosylhomocysteine hydrolase inhibition in deoxyadenosine-treated human T-lymphoblasts and resting peripheral blood lymphocytes. Cancer Res. 1982 Sep;42(9):3822–3827. [PubMed] [Google Scholar]
- King M. E., Honeysett J. M., Howell S. B. Regulation of de novo purine synthesis in human bone marrow mononuclear cells by hypoxanthine. J Clin Invest. 1983 Sep;72(3):965–970. doi: 10.1172/JCI111068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kredich N. M., Martin D. V., Jr Role of S-adenosylhomocysteine in adenosinemediated toxicity in cultured mouse T lymphoma cells. Cell. 1977 Dec;12(4):931–938. doi: 10.1016/0092-8674(77)90157-x. [DOI] [PubMed] [Google Scholar]
- Matsumoto S. S., Yu J., Yu A. L. Inhibition of RNA synthesis by deoxyadenosine plus deoxycoformycin in resting lymphocytes. J Immunol. 1983 Dec;131(6):2762–2766. [PubMed] [Google Scholar]
- Pilz R. B., Willis R. C., Boss G. R. The influence of ribose 5-phosphate availability on purine synthesis of cultured human lymphoblasts and mitogen-stimulated lymphocytes. J Biol Chem. 1984 Mar 10;259(5):2927–2935. [PubMed] [Google Scholar]
- Rosenblatt D. S., Cooper B. A., Lue-Shing S., Wong P. W., Berlow S., Narisawa K., Baumgartner R. Folate distribution in cultured human cells. Studies on 5,10-CH2-H4PteGlu reductase deficiency. J Clin Invest. 1979 May;63(5):1019–1025. doi: 10.1172/JCI109370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roth D. G., Deuel T. F. Stability and regulation of phosphoribosyl pyrophosphate synthetase from rat liver. J Biol Chem. 1974 Jan 10;249(1):297–301. [PubMed] [Google Scholar]
- Spaapen L. J., Rijkers G. T., Staal G. E., Rijksen G., Wadman S. K., Stoop J. W., Zegers B. J. The effect of deoxyguanosine on human lymphocyte function. I. Analysis of the interference with lymphocyte proliferation in vitro. J Immunol. 1984 May;132(5):2311–2317. [PubMed] [Google Scholar]
- Staal G. E., Stoop J. W., Zegers B. J., Siegenbeek van Heukelom L. H., van der Vlist M. J., Wadman S. K., Martin D. W. Erythrocyte metabolism in purine nucleoside phosphorylase deficiency after enzyme replacement therapy by infusion of erythrocytes. J Clin Invest. 1980 Jan;65(1):103–108. doi: 10.1172/JCI109639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson L. F., Seegmiller J. E. Adenosine deaminase deficiency and severe combined immunodeficiency disease. Adv Enzymol Relat Areas Mol Biol. 1980;51:167–210. doi: 10.1002/9780470122969.ch4. [DOI] [PubMed] [Google Scholar]
- Villar E., Schuster B., Peterson D., Schirch V. C1-Tetrahydrofolate synthase from rabbit liver. Structural and kinetic properties of the enzyme and its two domains. J Biol Chem. 1985 Feb 25;260(4):2245–2252. [PubMed] [Google Scholar]
- Wasserman G. F., Benkovic P. A., Young M., Benkovic S. J. Kinetic relationships between the various activities of the formyl-methenyl-methylenetetrahydrofolate synthetase. Biochemistry. 1983 Mar 1;22(5):1005–1013. doi: 10.1021/bi00274a002. [DOI] [PubMed] [Google Scholar]
