Abstract
4,4-Di-isothiocyanostilbene-2,2'-disulphonic acid inhibition of taurocholate efflux from canalicular vesicles was used to demonstrate that potential driven and 'carrier'-mediated canalicular excretion of taurocholate occur via a common, rather than two separate, pathways. This electrogenic canalicular bile acid 'carrier' preferentially transports trihydroxylated and conjugated dihydroxylated bile acids, but not the unphysiological oxo bile acids, and possibly extends its substrate specificity to other amphipathic molecules such as sulphobromophthalein.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akerboom T., Inoue M., Sies H., Kinne R., Arias I. M. Biliary transport of glutathione disulfide studied with isolated rat-liver canalicular-membrane vesicles. Eur J Biochem. 1984 May 15;141(1):211–215. doi: 10.1111/j.1432-1033.1984.tb08177.x. [DOI] [PubMed] [Google Scholar]
- Anwer M. S., O'Maille E. R., Hofmann A. F., DiPietro R. A., Michelotti E. Influence of side-chain charge on hepatic transport of bile acids and bile acid analogues. Am J Physiol. 1985 Oct;249(4 Pt 1):G479–G488. doi: 10.1152/ajpgi.1985.249.4.G479. [DOI] [PubMed] [Google Scholar]
- Ballatori N., Moseley R. H., Boyer J. L. Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. Studies in rat liver sinusoidal and canalicular membrane vesicles. J Biol Chem. 1986 May 15;261(14):6216–6221. [PubMed] [Google Scholar]
- Blitzer B. L., Boyer J. L. Cellular mechanisms of bile formation. Gastroenterology. 1982 Feb;82(2):346–357. [PubMed] [Google Scholar]
- Boyer J. L. New concepts of mechanisms of hepatocyte bile formation. Physiol Rev. 1980 Apr;60(2):303–326. doi: 10.1152/physrev.1980.60.2.303. [DOI] [PubMed] [Google Scholar]
- Drew R., Priestly B. G. Choleretic and cholestatic effects of infused bile salts in the rat. Experientia. 1979 Jun 15;35(6):809–811. doi: 10.1007/BF01968265. [DOI] [PubMed] [Google Scholar]
- Hardison W. G., Bellentani S., Heasley V., Shellhamer D. Specificity of an Na+ -dependent taurocholate transport site in isolated rat hepatocytes. Am J Physiol. 1984 May;246(5 Pt 1):G477–G483. doi: 10.1152/ajpgi.1984.246.5.G477. [DOI] [PubMed] [Google Scholar]
- Hofmann A. F. Chemistry and enterohepatic circulation of bile acids. Hepatology. 1984 Sep-Oct;4(5 Suppl):4S–14S. doi: 10.1002/hep.1840040803. [DOI] [PubMed] [Google Scholar]
- Inoue M., Akerboom T. P., Sies H., Kinne R., Thao T., Arias I. M. Biliary transport of glutathione S-conjugate by rat liver canalicular membrane vesicles. J Biol Chem. 1984 Apr 25;259(8):4998–5002. [PubMed] [Google Scholar]
- Inoue M., Kinne R., Tran T., Arias I. M. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system. J Clin Invest. 1984 Mar;73(3):659–663. doi: 10.1172/JCI111257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue M., Kinne R., Tran T., Arias I. M. The mechanism of biliary secretion of reduced glutathione. Analysis of transport process in isolated rat-liver canalicular membrane vesicles. Eur J Biochem. 1983 Aug 15;134(3):467–471. doi: 10.1111/j.1432-1033.1983.tb07590.x. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Meier P. J., St Meier-Abt A., Barrett C., Boyer J. L. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier. J Biol Chem. 1984 Aug 25;259(16):10614–10622. [PubMed] [Google Scholar]
- Meier P. J., Sztul E. S., Reuben A., Boyer J. L. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J Cell Biol. 1984 Mar;98(3):991–1000. doi: 10.1083/jcb.98.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reichen J., Paumgartner G. Uptake of bile acids by perfused rat liver. Am J Physiol. 1976 Sep;231(3):734–742. doi: 10.1152/ajplegacy.1976.231.3.734. [DOI] [PubMed] [Google Scholar]
- Vessey D. A., Whitney J., Gollan J. L. The role of conjugation reactions in enhancing biliary secretion of bile acids. Biochem J. 1983 Sep 15;214(3):923–927. doi: 10.1042/bj2140923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieland T., Nassal M., Kramer W., Fricker G., Bickel U., Kurz G. Identity of hepatic membrane transport systems for bile salts, phalloidin, and antamanide by photoaffinity labeling. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5232–5236. doi: 10.1073/pnas.81.16.5232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson F. A. Intestinal transport of bile acids. Am J Physiol. 1981 Aug;241(2):G83–G92. doi: 10.1152/ajpgi.1981.241.2.G83. [DOI] [PubMed] [Google Scholar]
- Ziegler K., Frimmer M., Fasold H. Further characterization of membrane proteins involved in the transport of organic anions in hepatocytes. Comparison of two different affinity labels: 4,4'-diisothiocyano-1,2-diphenylethane-2,2'-disulfonic acid and brominated taurodehydrocholic acid. Biochim Biophys Acta. 1984 Jan 11;769(1):117–129. doi: 10.1016/0005-2736(84)90015-4. [DOI] [PubMed] [Google Scholar]
