Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Mar 1;242(2):471–478. doi: 10.1042/bj2420471

The effects of chemically modifying serum apolipoproteins on their ability to activate lipoprotein lipase.

P F Dodds, A Lopez-Johnston, V A Welch, M I Gurr
PMCID: PMC1147729  PMID: 3593262

Abstract

Lipoprotein lipase activity was measured in an acetone-dried-powder preparation from rat epididymal adipose tissue using pig serum or pig serum lipoprotein, which had been chemically modified, as activator. Modification of acidic amino acids of lipoproteins with NN-dimethyl-1,3-diamine resulted in a complete loss of ability to activate lipoprotein lipase. Modification of 34% of lipoprotein arginine groups with cyclohexanedione resulted in the loss of 75% of the activation of lipoprotein lipase; approx. 42% of the original activity was recovered after reversal of the modification. This effect was dependent on the cyclohexanedione concentration. Modification of 48% of lipoprotein lysine groups with malonaldehyde decreased the maximum activation by 20%, but three times as much lipoprotein was required to achieve this. Non-enzymic glycosylation of lipoprotein with glucose, under a variety of conditions resulting in up to 28 nmol of glucose/mg of protein, had no effect upon the ability to activate lipoprotein lipase. In contrast non-enzymic sialylation resulted in a time-dependent loss of up to 60% of ability to activate lipoprotein lipase. Reductive methylation and acetoacetylation of serum did not affect the ability to activate lipoprotein lipase. The results are compared to the effects of similar modifications to low density lipoproteins on receptor-mediated endocytosis.

Full text

PDF
471

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baginsky M. L. Measurement of lipoprotein lipase and hepatic triglyceride lipase in human postheparin plasma. Methods Enzymol. 1981;72:325–338. doi: 10.1016/s0076-6879(81)72023-8. [DOI] [PubMed] [Google Scholar]
  2. Basu S. K., Goldstein J. L., Anderson G. W., Brown M. S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3178–3182. doi: 10.1073/pnas.73.9.3178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Belfrage P., Vaughan M. Simple liquid-liquid partition system for isolation of labeled oleic acid from mixtures with glycerides. J Lipid Res. 1969 May;10(3):341–344. [PubMed] [Google Scholar]
  4. Brown W. V., Baginsky M. L. Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem Biophys Res Commun. 1972 Jan 31;46(2):375–382. doi: 10.1016/s0006-291x(72)80149-9. [DOI] [PubMed] [Google Scholar]
  5. Chung J., Abano D. A., Fless G. M., Scanu A. M. Isolation, properties, and mechanism of in vitro action of lecithin: cholesterol acyltransferase from human plasma. J Biol Chem. 1979 Aug 10;254(15):7456–7464. [PubMed] [Google Scholar]
  6. Day J. F., Thornburg R. W., Thorpe S. R., Baynes J. W. Nonenzymatic glucosylation of rat albumin. Studies in vitro and in vivo. J Biol Chem. 1979 Oct 10;254(19):9394–9400. [PubMed] [Google Scholar]
  7. Haberland M. E., Fogelman A. M., Edwards P. A. Specificity of receptor-mediated recognition of malondialdehyde-modified low density lipoproteins. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1712–1716. doi: 10.1073/pnas.79.6.1712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Howard B. V., Savage P. J., Bennion L. J., Bennett P. H. Lipoprotein composition in diabetes mellitus. Atherosclerosis. 1978 Jun;30(2):153–162. doi: 10.1016/0021-9150(78)90058-8. [DOI] [PubMed] [Google Scholar]
  9. Hurrell R. F., Carpenter K. J. Mechanisms of heat damage in proteins. 4. The reactive lysine content of heat-damaged material as measured in different ways. Br J Nutr. 1974 Nov;32(3):589–604. doi: 10.1079/bjn19740112. [DOI] [PubMed] [Google Scholar]
  10. Hübscher G., West G. R., Brindley D. N. Studies on the fractionation of mucosal homogenates from the small intestine. Biochem J. 1965 Dec;97(3):629–642. doi: 10.1042/bj0970629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jackson R. L., Baker H. N., Gilliam E. B., Gotto A. M., Jr Primary structure of very low density apolipoprotein C-II of human plasma. Proc Natl Acad Sci U S A. 1977 May;74(5):1942–1945. doi: 10.1073/pnas.74.5.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kesaniemi Y. A., Witztum J. L., Steinbrecher U. P. Receptor-mediated catabolism of low density lipoprotein in man. Quantitation using glucosylated low density lipoprotein. J Clin Invest. 1983 Apr;71(4):950–959. doi: 10.1172/JCI110849. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim H. J., Kurup I. V. Nonenzymatic glycosylation of human plasma low density lipoprotein. Evidence for in vitro and in vivo glucosylation. Metabolism. 1982 Apr;31(4):348–353. doi: 10.1016/0026-0495(82)90109-3. [DOI] [PubMed] [Google Scholar]
  14. Kinnunen P. K., Jackson R. L., Smith L. C., Gotto A. M., Jr, Sparrow J. T. Activation of lipoprotein lipase by native and synthetic fragments of human plasma apolipoprotein C-II. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4848–4851. doi: 10.1073/pnas.74.11.4848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Mahley R. W., Innerarity T. L., Pitas R. E., Weisgraber K. H., Brown J. H., Gross E. Inhibition of lipoprotein binding to cell surface receptors of fibroblasts following selective modification of arginyl residues in arginine-rich and B apoproteins. J Biol Chem. 1977 Oct 25;252(20):7279–7287. [PubMed] [Google Scholar]
  17. Murtiashaw M. H., Young J. E., Strickland A. L., McFarland K. F., Thorpe S. R., Baynes J. W. Measurement of nonenzymatically glucosylated serum protein by an improved thiobarbituric acid assay. Clin Chim Acta. 1983 May 30;130(2):177–187. doi: 10.1016/0009-8981(83)90115-8. [DOI] [PubMed] [Google Scholar]
  18. Musliner T. A., Herbert P. N., Church E. C. Activation of lipoprotein lipase by native and acylated peptides of apolipoprotein C-II. Biochim Biophys Acta. 1979 Jun 21;573(3):501–509. doi: 10.1016/0005-2760(79)90224-8. [DOI] [PubMed] [Google Scholar]
  19. Nikkilä E. A., Kekki M. Plasma triglyceride transport kinetics in diabetes mellitus. Metabolism. 1973 Jan;22(1):1–22. doi: 10.1016/0026-0495(73)90024-3. [DOI] [PubMed] [Google Scholar]
  20. Nilsson-Ehle P., Schotz M. C. A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res. 1976 Sep;17(5):536–541. [PubMed] [Google Scholar]
  21. Pitas R. E., Innerarity T. L., Arnold K. S., Mahley R. W. Rate and equilibrium constants for binding of apo-E HDLc (a cholesterol-induced lipoprotein) and low density lipoproteins to human fibroblasts: evidence for multiple receptor binding of apo-E HDLc. Proc Natl Acad Sci U S A. 1979 May;76(5):2311–2315. doi: 10.1073/pnas.76.5.2311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Salaman M. R., Robinson D. S. Clearing-factor lipase in adipose tissue. A medium in which the enzyme activity of tissue from starved rats increases in vitro. Biochem J. 1966 Jun;99(3):640–647. doi: 10.1042/bj0990640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sasaki J., Arora V., Cottam G. L. Nonenzymatic galactosylation of human LDL decreases its metabolism by human skin fibroblasts. Biochem Biophys Res Commun. 1982 Sep 30;108(2):791–796. doi: 10.1016/0006-291x(82)90898-1. [DOI] [PubMed] [Google Scholar]
  24. Sasaki J., Cottam G. L. Glycosylation of LDL decreases its ability to interact with high-affinity receptors of human fibroblasts in vitro and decreases its clearance from rabbit plasma in vivo. Biochim Biophys Acta. 1982 Nov 12;713(2):199–207. doi: 10.1016/0005-2760(82)90237-5. [DOI] [PubMed] [Google Scholar]
  25. Schleicher E., Deufel T., Wieland O. H. Non-enzymatic glycosylation of human serum lipoproteins. Elevated epsilon-lysine glycosylated low density lipoprotein in diabetic patients. FEBS Lett. 1981 Jun 29;129(1):1–4. doi: 10.1016/0014-5793(81)80741-7. [DOI] [PubMed] [Google Scholar]
  26. Shireman R., Kilgore L. L., Fisher W. R. Solubilization of apolipoprotein B and its specific binding by the cellular receptor for low density lipoprotein. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5150–5154. doi: 10.1073/pnas.74.11.5150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith L. C., Voyta J. C., Catapano A. L., Kinnunen P. K., Gotto A. M., Jr, Sparrow J. T. Activation of lipoprotein lipase by synthetic fragments of apolipoprotein C-II. Ann N Y Acad Sci. 1980;348:213–223. doi: 10.1111/j.1749-6632.1980.tb21302.x. [DOI] [PubMed] [Google Scholar]
  28. Taskinen M. R., Nikkilä E. A. Lipoprotein lipase activity of adipose tissue and skeletal muscle in insulin-deficient human diabetes. Relation to high-density and very-low-density lipoproteins and response to treatment. Diabetologia. 1979 Dec;17(6):351–356. doi: 10.1007/BF01236268. [DOI] [PubMed] [Google Scholar]
  29. Weisgraber K. H., Innerarity T. L., Mahley R. W. Role of lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts. J Biol Chem. 1978 Dec 25;253(24):9053–9062. [PubMed] [Google Scholar]
  30. Witztum J. L., Fisher M., Pietro T., Steinbrecher U. P., Elam R. L. Nonenzymatic glucosylation of high-density lipoprotein accelerates its catabolism in guinea pigs. Diabetes. 1982 Nov;31(11):1029–1032. doi: 10.2337/diacare.31.11.1029. [DOI] [PubMed] [Google Scholar]
  31. Witztum J. L., Mahoney E. M., Branks M. J., Fisher M., Elam R., Steinberg D. Nonenzymatic glucosylation of low-density lipoprotein alters its biologic activity. Diabetes. 1982 Apr;31(4 Pt 1):283–291. doi: 10.2337/diab.31.4.283. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES