Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Mar 1;242(2):485–492. doi: 10.1042/bj2420485

Rate-limiting steps for protein synthesis in isolated rat liver cells. Role of aspartate availability.

D Pérez-Sala, B Bengoa, A Martín-Requero, R Parrilla, M S Ayuso
PMCID: PMC1147731  PMID: 3593263

Abstract

Amino-oxyacetate (carboxymethoxylamine) was found to inhibit protein labelling in isolated liver cells. A similar degree of inhibition (about 70%) was observed of basal and substrate-stimulated rates of protein labelling, ruling out an action on the cellular energy state. Its effect does not seem to be related either to a perturbation of the reduction state of the NAD system or to rate changes in the gluconeogenic pathway. The following observations indicate that amino-oxyacetate inhibits protein labelling by limiting aspartate supply. Amino-oxyacetate was ineffective in a postmitochondrial supernatant under non-limiting amino acid supply conditions. The aspartate cellular content decreases in the presence of amino-oxyacetate, although most other amino acids tend to accumulate. L-Cycloserine was unable to decrease aspartate content and was ineffective in decreasing protein labelling. The inhibitory action of amino-oxyacetate was specifically reversed by incubating cells with amino acids that increase the cellular content of aspartate.

Full text

PDF
485

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. E., Raines P. L., Regen D. M. Regulatory significance of transfer RNA charging levels. I. Measurements of charging levels in livers of chow-fed rats, fasting rats, and rats fed balanced or imbalanced mixtures of amino acids. Biochim Biophys Acta. 1969 Oct 22;190(2):323–336. doi: 10.1016/0005-2787(69)90083-5. [DOI] [PubMed] [Google Scholar]
  2. Arinze I. J., Garber A. J., Hanson R. W. The regulation of gluconeogenesis in mammalian liver. The role of mitochondrial phosphoenolpyruvate carboxykinase. J Biol Chem. 1973 Apr 10;248(7):2266–2274. [PubMed] [Google Scholar]
  3. BARBIERI P., DI MARCO A., FUOCO L., JULITA P., MIGLIACCI A., RUSCONI A. Investigation on the mode of action of cycloserine upon protein synthesis of E. coli and animal cells. 2. Action of L-cycloserine on protein metabolism of alanine and on enzymic preparations. Biochem Pharmacol. 1960 Jul;3:264–271. doi: 10.1016/0006-2952(60)90090-3. [DOI] [PubMed] [Google Scholar]
  4. BRAUNSTEIN A. E. BINDING AND REACTIONS OF THE VITAMIN B6 COENZYME IN THE CATALYTIC CENTER OF ASPARTATE TRANSAMINASE. Vitam Horm. 1964;22:451–484. doi: 10.1016/s0083-6729(08)60348-9. [DOI] [PubMed] [Google Scholar]
  5. Brosnan J. T., Krebs H. A., Williamson D. H. Effects of ischaemia on metabolite concentrations in rat liver. Biochem J. 1970 Mar;117(1):91–96. doi: 10.1042/bj1170091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornell N. W., Crow K. E., Whitefoot R. P. Re-activation by glutamate or aspartate of amino-oxyacetate-inhibited aspartate aminotransferase in vitro and in isolated hepatocytes. Biochem J. 1981 Jul 15;198(1):219–223. doi: 10.1042/bj1980219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cornell N. W., Lund P., Krebs H. A. The effect of lysine on gluconeogenesis from lactate in rat hepatocytes. Biochem J. 1974 Aug;142(2):327–337. doi: 10.1042/bj1420327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dieterle P., Brawand F., Moser U. K., Walter P. Alanine metabolism in rat liver mitochondria. Eur J Biochem. 1978 Aug 1;88(2):467–473. doi: 10.1111/j.1432-1033.1978.tb12471.x. [DOI] [PubMed] [Google Scholar]
  9. Geels J., Bont W. S., Rezelman G. Isolation from rat liver of all aminoacyl-tRNA synthetases by centrifugation. Arch Biochem Biophys. 1971 Jun;144(2):773–774. doi: 10.1016/0003-9861(71)90386-9. [DOI] [PubMed] [Google Scholar]
  10. Girbes T., Susin A., Ayuso M. S., Parrilla R. Acute effects of ethanol in the control of protein synthesis in isolated rat liver cells. Arch Biochem Biophys. 1983 Oct 1;226(1):37–49. doi: 10.1016/0003-9861(83)90269-2. [DOI] [PubMed] [Google Scholar]
  11. KUN E., AYLING J. E., BALTIMORE B. G. STUDIES ON SPECIFIC ENZYME INHIBITORS. 8. ENZYME-REGULATORY MECHANISM OF THE ENTRY OF GLUTAMIC ACID INTO METABOLIC PATHWAYS IN KIDNEY TISSUE. J Biol Chem. 1964 Sep;239:2896–2904. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Longshaw I. D., Bowen N. L., Pogson C. I. The pathway of gluconeogenesis in the cortex of guinea-pig kidney. Use of aminooxyacetate as a transaminase inhibitor. Eur J Biochem. 1972 Feb 15;25(2):366–371. doi: 10.1111/j.1432-1033.1972.tb01705.x. [DOI] [PubMed] [Google Scholar]
  14. Meijer A. J., Gimpel J. A., Deleeuw G., Tischler M. E., Tager J. M., Williamson J. R. Interrelationships between gluconeogenesis and ureogenesis in isolated hepatocytes. J Biol Chem. 1978 Apr 10;253(7):2308–2320. [PubMed] [Google Scholar]
  15. Mortimore G. E., Mondon C. E. Inhibition by insulin of valine turnover in liver. Evidence for a general control of proteolysis. J Biol Chem. 1970 May 10;245(9):2375–2383. [PubMed] [Google Scholar]
  16. NORTON S. J., RAVEL J. M., LEE C., SHIVE W. Purification and properties of the aspartyl ribonucleic acid synthetase of Lactobacillus arabinosus. J Biol Chem. 1963 Jan;238:269–274. [PubMed] [Google Scholar]
  17. Otto K. Alanin-Transaminase und Gluconeogenese. Hoppe Seylers Z Physiol Chem. 1965;341(1):99–104. [PubMed] [Google Scholar]
  18. Parrilla R., Goodman M. N. Nitrogen metabolism in the isolated perfused rat liver. Nitrogen balance, redox state and rates of proteolysis. Biochem J. 1974 Mar;138(3):341–348. doi: 10.1042/bj1380341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Parrilla R., Okawa K., Lindros K. O., Zimmerman U. J., Kobayashi K., Williamson J. R. Functional compartmentation of acetaldehyde oxidation in rat liver. J Biol Chem. 1974 Aug 10;249(15):4926–4933. [PubMed] [Google Scholar]
  20. Perin A., Scalabrino G., Sessa A., Arnaboldi A. In vitro inhibition of protein synthesis in rat liver as a consequence of ethanol metabolism. Biochim Biophys Acta. 1974 Sep 27;366(1):101–108. doi: 10.1016/0005-2787(74)90322-0. [DOI] [PubMed] [Google Scholar]
  21. Pérez-Sala D., Cerdán S., Ballesteros P., Ayuso M. S., Parrilla R. Pyruvate decarboxylating action of L-cycloserine. The significance of this in understanding its metabolic inhibitory action. J Biol Chem. 1986 Oct 25;261(30):13969–13972. [PubMed] [Google Scholar]
  22. Requero A. M., Díaz J. P., Ayuso-Parrilla M. S., Parrilla R. On the mechanism of the glucagon-induced inhibition of hepatic protein synthesis. Arch Biochem Biophys. 1979 Jun;195(1):223–234. doi: 10.1016/0003-9861(79)90344-8. [DOI] [PubMed] [Google Scholar]
  23. Rognstad R., Clark D. G. Effects of aminooxyacetate on the metabolism of isolated liver cells. Arch Biochem Biophys. 1974 Apr 2;161(2):638–646. doi: 10.1016/0003-9861(74)90348-8. [DOI] [PubMed] [Google Scholar]
  24. Rognstad R., Katz J. Gluconeogenesis in the kidney cortex. Effects of D-malate and amino-oxyacetate. Biochem J. 1970 Feb;116(3):483–491. doi: 10.1042/bj1160483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ross B. D., Hems R., Krebs H. A. The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J. 1967 Mar;102(3):942–951. doi: 10.1042/bj1020942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Seglen P. O., Solheim A. E. Effects of aminooxyacetate, alanine and other amino acids on protein synthesis in isolated rat hepatocytes. Biochim Biophys Acta. 1978 Oct 24;520(3):630–641. doi: 10.1016/0005-2787(78)90148-x. [DOI] [PubMed] [Google Scholar]
  27. Tischler M. E., Desautels M., Goldberg A. L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem. 1982 Feb 25;257(4):1613–1621. [PubMed] [Google Scholar]
  28. Tischler M. E., Hecht P., Williamson J. R. Determination of mitochondrial/cytosolic metabolite gradients in isolated rat liver cells by cell disruption. Arch Biochem Biophys. 1977 May;181(1):278–293. doi: 10.1016/0003-9861(77)90506-9. [DOI] [PubMed] [Google Scholar]
  29. Williamson D. H., Lopes-Vieira O., Walker B. Concentrations of free glucogenic amino acids in livers of rats subjected to various metabolic stresses. Biochem J. 1967 Aug;104(2):497–502. doi: 10.1042/bj1040497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wong D. T., Fuller R. W., Molloy B. B. Inhibition of amino acid transaminases by L-cycloserine. Adv Enzyme Regul. 1973;11:139–154. doi: 10.1016/0065-2571(73)90013-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES