Abstract
The kinetics of galactoside-proton symport catalysed by a wild-type strain and one carrying a mutation, previously reported to cause uncoupling of the symport reaction, have been examined. The mutation does not affect the stoichiometry during the initial period of uptake, when the internal concentration of galactoside is low, but it does result in much greater competition from the galactoside as it is accumulated. Simple methods for the analysis of the uptake progress curves have been developed and used to estimate the initial rate of uptake and affinity for internal galactoside. The maximum rate of uptake is decreased by a factor of 2 at most whereas the affinity for internal galactoside is increased up to 50-fold by the mutation. The pH-dependence of the galactoside efflux reaction is changed in a manner which suggests that the defect is in the interaction between proton-binding and galactoside-binding sites rather than in the structure of either site.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmed S., Booth I. R. Quantitative measurements of the proton-motive force and its relation to steady state lactose accumulation in Escherichia coli. Biochem J. 1981 Dec 15;200(3):573–581. doi: 10.1042/bj2000573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahmed S., Booth I. R. The effects of partial and selective reduction in the components of the proton-motive force on lactose uptake in Escherichia coli. Biochem J. 1981 Dec 15;200(3):583–589. doi: 10.1042/bj2000583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson E. H. Growth Requirements of Virus-Resistant Mutants of Escherichia Coli Strain "B". Proc Natl Acad Sci U S A. 1946 May;32(5):120–128. doi: 10.1073/pnas.32.5.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUTTIN G., COHEN G. N., MONOD J., RICKENBERG H. V. La galactoside-perméase d'Escherichia coli. Ann Inst Pasteur (Paris) 1956 Dec;91(6):829–857. [PubMed] [Google Scholar]
- Bentaboulet M., Kepes A. Dependence on pH of parameters of lactose transport in Escherichia coli. Evidence for an essential protonated group of the carrier. Eur J Biochem. 1981 Jul;117(2):233–238. doi: 10.1111/j.1432-1033.1981.tb06327.x. [DOI] [PubMed] [Google Scholar]
- Booth I. R., Mitchell W. J., Hamilton W. A. Quantitative analysis of proton-linked transport systems. The lactose permease of Escherichia coli. Biochem J. 1979 Sep 15;182(3):687–696. doi: 10.1042/bj1820687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cleland W. W. Statistical analysis of enzyme kinetic data. Methods Enzymol. 1979;63:103–138. doi: 10.1016/0076-6879(79)63008-2. [DOI] [PubMed] [Google Scholar]
- Geck P., Heinz E. Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked co-transport. Biochim Biophys Acta. 1976 Aug 4;443(1):49–63. doi: 10.1016/0005-2736(76)90490-9. [DOI] [PubMed] [Google Scholar]
- Hankin B. L., Lieb W. R., Stein W. D. Rejection criteria for the asymmetric carrier and their application to glucose transport in the human red blood cell. Biochim Biophys Acta. 1972 Oct 23;288(1):114–126. doi: 10.1016/0005-2736(72)90229-5. [DOI] [PubMed] [Google Scholar]
- Herzlinger D., Carrasco N., Kaback H. R. Functional and immunochemical characterization of a mutant of Escherichia coli energy uncoupled for lactose transport. Biochemistry. 1985 Jan 1;24(1):221–229. doi: 10.1021/bi00322a032. [DOI] [PubMed] [Google Scholar]
- Kennedy E. P., Rumley M. K., Armstrong J. B. Dierect measurement of the binding of labeled sugars to the lactose permease M protein. J Biol Chem. 1974 Jan 10;249(1):33–37. [PubMed] [Google Scholar]
- Maloney P. C., Wilson T. H. Quantitative aspects of active transport by the lactose transport system of Escherichia coli. Biochim Biophys Acta. 1973 Dec 13;330(2):196–205. doi: 10.1016/0005-2736(73)90225-3. [DOI] [PubMed] [Google Scholar]
- Page M. G., Jou Y. H. Alternative-substrate inhibition and the kinetic mechanism of the beta-galactoside/proton symport of Escherichia coli. Biochem J. 1982 Jun 15;204(3):681–688. doi: 10.1042/bj2040681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page M. G., West I. C. Kinetics of lactose transport into Escherichia coli in the presence and absence of a protonmotive force. FEBS Lett. 1980 Nov 3;120(2):187–191. doi: 10.1016/0014-5793(80)80294-8. [DOI] [PubMed] [Google Scholar]
- Page M. G., West I. C. The kinetics of the beta-galactoside-proton symport of Escherichia coli. Biochem J. 1981 Jun 15;196(3):721–731. doi: 10.1042/bj1960721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page M. G., West I. C. The transient kinetics of uptake of galactosides into Escherichia coli. Biochem J. 1984 Nov 1;223(3):723–731. doi: 10.1042/bj2230723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson D. E., Kaczorowski G. J., Garcia M. L., Kaback H. R. Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states. Biochemistry. 1980 Dec 9;19(25):5692–5702. doi: 10.1021/bi00566a005. [DOI] [PubMed] [Google Scholar]
- Seto-Young D., Bedu S., Wilson T. H. Transport by reconstituted lactose carrier from parental and mutant strains of Escherichia coli. J Membr Biol. 1984;79(2):185–193. doi: 10.1007/BF01872122. [DOI] [PubMed] [Google Scholar]
- West I. C. Energy coupling in secondary active transport. Biochim Biophys Acta. 1980 May 27;604(1):91–126. doi: 10.1016/0005-2736(80)90586-6. [DOI] [PubMed] [Google Scholar]
- West I. C. Lactose transport coupled to proton movements in Escherichia coli. Biochem Biophys Res Commun. 1970 Nov 9;41(3):655–661. doi: 10.1016/0006-291x(70)90063-x. [DOI] [PubMed] [Google Scholar]
- West I. C., Mitchell P. Stoicheiometry of lactose-H+ symport across the plasma membrane of Escherichia coli. Biochem J. 1973 Mar;132(3):587–592. doi: 10.1042/bj1320587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- West I. C., Wilson T. H. Galactoside transport dissociated from proton movement in mutants of Escherichia coli. Biochem Biophys Res Commun. 1973 Jan 23;50(2):551–558. doi: 10.1016/0006-291x(73)90875-9. [DOI] [PubMed] [Google Scholar]
- Wilson T. H., Kusch M. A mutant of Escherichia coli K 12 energy-uncoupled for lactose transport. Biochim Biophys Acta. 1972 Mar 17;255(3):786–797. doi: 10.1016/0005-2736(72)90391-4. [DOI] [PubMed] [Google Scholar]
- Wilson T. H., Kusch M., Kashket E. R. A mutant in Escherichia coli energy-uncoupled for lactose transporta defect in the lactose-operon. Biochem Biophys Res Commun. 1970 Sep 30;40(6):1409–1414. doi: 10.1016/0006-291x(70)90024-0. [DOI] [PubMed] [Google Scholar]
- Wong P. T., Kashket E. R., Wilson T. H. Energy coupling in the lactose transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1970 Jan;65(1):63–69. doi: 10.1073/pnas.65.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright J. K., Seckler R. The lactose/H+ carrier of Escherichia coli: lac YUN mutation decreases the rate of active transport and mimics an energy-uncoupled phenotype. Biochem J. 1985 Apr 1;227(1):287–297. doi: 10.1042/bj2270287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright J. K. The kinetic mechanism of galactoside/H+ cotransport in Escherichia coli. Biochim Biophys Acta. 1986 Mar 13;855(3):391–416. doi: 10.1016/0005-2736(86)90085-4. [DOI] [PubMed] [Google Scholar]
