Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Mar 1;242(2):559–564. doi: 10.1042/bj2420559

Intracellular mechanisms in the activation of human platelets by low-density lipoproteins.

H E Andrews, J W Aitken, D G Hassall, V O Skinner, K R Bruckdorfer
PMCID: PMC1147741  PMID: 3109394

Abstract

Low-density lipoproteins (LDL) have been shown to cause aggregation of human blood platelets at concentrations above 2 g of protein/l. The secretion of the contents of platelet dense granules was detected, but not that of the lysosomes. LDL gave rise to a mobilization of [3H]arachidonic acid from phospholipids and the appearance of products of the cyclo-oxygenase pathway after only 10 s. LDL-promoted aggregation was inhibited by both aspirin and indomethacin. There was an increase in 3H-labelled diacylglycerols and the phosphorylation of 47 kDa proteins. LDL therefore shares at least some of the mechanisms of stimulus/response coupling with those of other agonists.

Full text

PDF
559

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviram M., Brook G. J. The effect of human plasma on platelet function in familial hypercholesterolemia. Thromb Res. 1982 Apr 15;26(2):101–109. doi: 10.1016/0049-3848(82)90019-6. [DOI] [PubMed] [Google Scholar]
  2. Aviram M., Brook J. G. Selective release from platelet granules induced by plasma lipoproteins. Biochem Med. 1984 Aug;32(1):30–33. doi: 10.1016/0006-2944(84)90005-x. [DOI] [PubMed] [Google Scholar]
  3. Aviram M., Sirtori C. R., Colli S., Maderna P., Morazzoni G., Tremoli E. Plasma lipoproteins affect platelet malondialdehyde and thromboxane B2 production. Biochem Med. 1985 Aug;34(1):29–36. doi: 10.1016/0006-2944(85)90059-6. [DOI] [PubMed] [Google Scholar]
  4. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  5. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bruckdorfer K. R., Buckley S., Hassall D. G. The effect of low-density lipoproteins on the synthesis of cyclic nucleotides induced by prostacyclin in isolated platelets. Biochem J. 1984 Oct 1;223(1):189–196. doi: 10.1042/bj2230189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carvalho A. C., Colman R. W., Lees R. S. Platelet function in hyperlipoproteinemia. N Engl J Med. 1974 Feb 21;290(8):434–438. doi: 10.1056/NEJM197402212900805. [DOI] [PubMed] [Google Scholar]
  8. Colli S., Lombroso M., Maderna P., Tremoli E., Nicosia S. Effects of PGI2 on platelet aggregation and adenylate cyclase activity in human type IIa hypercholesterolemia. Biochem Pharmacol. 1983 Jul 1;32(13):1989–1993. doi: 10.1016/0006-2952(83)90416-1. [DOI] [PubMed] [Google Scholar]
  9. Curtiss L. K., Plow E. F. Interaction of plasma lipoproteins with human platelets. Blood. 1984 Aug;64(2):365–374. [PubMed] [Google Scholar]
  10. Daniel J. L., Molish I. R., Holmsen H. Myosin phosphorylation in intact platelets. J Biol Chem. 1981 Jul 25;256(14):7510–7514. [PubMed] [Google Scholar]
  11. Hassall D. G., Owen J. S., Bruckdorfer K. R. The aggregation of isolated human platelets in the presence of lipoproteins and prostacyclin. Biochem J. 1983 Oct 15;216(1):43–49. doi: 10.1042/bj2160043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hatch F. T. Practical methods for plasma lipoprotein analysis. Adv Lipid Res. 1968;6:1–68. [PubMed] [Google Scholar]
  13. Irvine R. F., Letcher A. J., Dawson R. M. Phosphatidylinositol-4,5-bisphosphate phosphodiesterase and phosphomonoesterase activities of rat brain. Some properties and possible control mechanisms. Biochem J. 1984 Feb 15;218(1):177–185. doi: 10.1042/bj2180177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kawahara Y., Takai Y., Minakuchi R., Sano K., Nishizuka Y. Phospholipid turnover as a possible transmembrane signal for protein phosphorylation during human platelet activation by thrombin. Biochem Biophys Res Commun. 1980 Nov 17;97(1):309–317. doi: 10.1016/s0006-291x(80)80169-0. [DOI] [PubMed] [Google Scholar]
  15. Koller E., Koller F., Doleschel W. Specific binding sites on human blood platelets for plasma lipoproteins. Hoppe Seylers Z Physiol Chem. 1982 Apr;363(4):395–405. doi: 10.1515/bchm2.1982.363.1.395. [DOI] [PubMed] [Google Scholar]
  16. Krauss R. M., Burke D. J. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res. 1982 Jan;23(1):97–104. [PubMed] [Google Scholar]
  17. Low M. G., Carroll R. C., Cox A. C. Characterization of multiple forms of phosphoinositide-specific phospholipase C purified from human platelets. Biochem J. 1986 Jul 1;237(1):139–145. doi: 10.1042/bj2370139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  19. Rittenhouse-Simmons S. Production of diglyceride from phosphatidylinositol in activated human platelets. J Clin Invest. 1979 Apr;63(4):580–587. doi: 10.1172/JCI109339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rittenhouse S. E. Human platelets contain phospholipase C that hydrolyzes polyphosphoinositides. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5417–5420. doi: 10.1073/pnas.80.17.5417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shmulewitz A., Brook J. G., Aviram M. Native and modified low-density-lipoprotein interaction with human platelets in normal and homozygous familial-hypercholesterolaemic subjects. Biochem J. 1984 Nov 15;224(1):13–20. doi: 10.1042/bj2240013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Siess W., Siegel F. L., Lapetina E. G. Arachidonic acid stimulates the formation of 1,2-diacylglycerol and phosphatidic acid in human platelets. Degree of phospholipase C activation correlates with protein phosphorylation, platelet shape change, serotonin release, and aggregation. J Biol Chem. 1983 Sep 25;258(18):11236–11242. [PubMed] [Google Scholar]
  23. Thompson N. T., Scrutton M. C. Inhibition by luciferin-luciferase reagents of aggregatory responses to excitatory agonists in washed platelet suspensions. Thromb Res. 1985 Apr 15;38(2):109–119. doi: 10.1016/0049-3848(85)90053-2. [DOI] [PubMed] [Google Scholar]
  24. Verhoeven A. J., Mommersteeg M. E., Akkerman J. W. Quantification of energy consumption in platelets during thrombin-induced aggregation and secretion. Tight coupling between platelet responses and the increment in energy consumption. Biochem J. 1984 Aug 1;221(3):777–787. doi: 10.1042/bj2210777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wolf M., LeVine H., 3rd, May W. S., Jr, Cuatrecasas P., Sahyoun N. A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters. Nature. 1985 Oct 10;317(6037):546–549. doi: 10.1038/317546a0. [DOI] [PubMed] [Google Scholar]
  26. Zahavi J., Betteridge J. D., Jones N. A., Galton D. J., Kakkar V. V. Enhanced in vivo platelet release reaction and malondialdehyde formation in patients with hyperlipidemia. Am J Med. 1981 Jan;70(1):59–64. doi: 10.1016/0002-9343(81)90412-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES