Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Mar 15;242(3):707–712. doi: 10.1042/bj2420707

Toxic effects of ozone on murine L929 fibroblasts. Enzyme inactivation and glutathione depletion.

J Van der Zee, T M Dubbelman, T K Raap, J Van Steveninck
PMCID: PMC1147768  PMID: 3593271

Abstract

Exposure of L929 murine fibroblasts to ozone resulted in K+ leakage and inhibition of several enzymes. Most sensitive to ozone exposure were glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase. The activities of another cytosolic enzyme, lactate dehydrogenase, the mitochondrial enzymes glutamate dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and the activity of the lysosomal enzymes acid phosphatase and beta-glucuronidase were, initially, not or only slightly affected. The localization of the lysosomal enzymes did not change during ozone exposure. After prolonged exposure complete deterioration of the cells was observed and all enzyme activities declined. The activity of the enzymes was also monitored during ozone exposure of a sonicated cell suspension and it was shown that all these enzymes are in fact susceptible to ozone. These observations clearly demonstrate that, besides the structure and amino acid composition of an enzyme, the localization in the cell plays an important role in its susceptibility to ozone. The intracellular levels of reduced and oxidized glutathione were affected as well. The ATP content, however, proved to be insensitive to ozone exposure.

Full text

PDF
707

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison A. C., Magnus I. A., Young M. R. Role of lysosomes and of cell membranes in photosensitization. Nature. 1966 Feb 26;209(5026):874–878. doi: 10.1038/209874a0. [DOI] [PubMed] [Google Scholar]
  2. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  3. Christensen T., Sandquist T., Feren K., Waksvik H., Moan J. Retention and photodynamic effects of haematoporphyrin derivative in cells after prolonged cultivation in the presence of porphyrin. Br J Cancer. 1983 Jul;48(1):35–43. doi: 10.1038/bjc.1983.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Collison M. W., Beidler D., Grimm L. M., Thomas J. A. A comparison of protein S-thiolation (protein mixed-disulfide formation) in heart cells treated with t-butyl hydroperoxide or diamide. Biochim Biophys Acta. 1986 Jan 23;885(1):58–67. doi: 10.1016/0167-4889(86)90038-8. [DOI] [PubMed] [Google Scholar]
  5. Dubbelman T. M., Van Steveninck J. Photodynamic effects of hematoporphyrin-derivative on transmembrane transport systems of murine L929 fibroblasts. Biochim Biophys Acta. 1984 Apr 11;771(2):201–207. doi: 10.1016/0005-2736(84)90534-0. [DOI] [PubMed] [Google Scholar]
  6. Freeman B. A., Mudd J. B. Reaction of ozone with sulfhydryls of human erythrocytes. Arch Biochem Biophys. 1981 Apr 15;208(1):212–220. doi: 10.1016/0003-9861(81)90142-9. [DOI] [PubMed] [Google Scholar]
  7. GRUBER W., WARZECHA K., PFLEIDERER G., WIELAND T. [Significance of SH groups for enzyme activity. II. On self-reactivation of lactic acid dehydrogenase after inactivation with mercuric reagents]. Biochem Z. 1962;336:107–117. [PubMed] [Google Scholar]
  8. Hamelin C., Chung Y. S. Dégradation de l'ADN et survie de mutants de résistance à l'ozone isolés chez Escherichia coli B. Mol Gen Genet. 1981;184(3):560–561. doi: 10.1007/BF00352541. [DOI] [PubMed] [Google Scholar]
  9. Hissin P. J., Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem. 1976 Jul;74(1):214–226. doi: 10.1016/0003-2697(76)90326-2. [DOI] [PubMed] [Google Scholar]
  10. Knight K. L., Mudd J. B. The reaction of ozone with glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys. 1984 Feb 15;229(1):259–269. doi: 10.1016/0003-9861(84)90152-8. [DOI] [PubMed] [Google Scholar]
  11. Kuroda M., Sakiyama F., Narita K. Oxidation of tryptophan in lysozyme by ozone in aqueous solution. J Biochem. 1975 Oct;78(4):641–651. doi: 10.1093/oxfordjournals.jbchem.a130951. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Menzel D. B. Oxidation of biologically active reducing substances by ozone. Arch Environ Health. 1971 Aug;23(2):149–153. doi: 10.1080/00039896.1971.10665973. [DOI] [PubMed] [Google Scholar]
  14. Menzel D. B. Ozone: an overview of its toxicity in man and animals. J Toxicol Environ Health. 1984;13(2-3):183–204. [PubMed] [Google Scholar]
  15. Morgan D. L., Wenzel D. G. Free radical species mediating the toxicity of ozone for cultured rat lung fibroblasts. Toxicology. 1985 Aug;36(2-3):243–251. doi: 10.1016/0300-483x(85)90057-5. [DOI] [PubMed] [Google Scholar]
  16. Mudd J. B., Leavitt R., Ongun A., McManus T. T. Reaction of ozone with amino acids and proteins. Atmos Environ. 1969 Nov;3(6):669–682. doi: 10.1016/0004-6981(69)90024-9. [DOI] [PubMed] [Google Scholar]
  17. PENNINGTON R. J. Biochemistry of dystrophic muscle. Mitochondrial succinate-tetrazolium reductase and adenosine triphosphatase. Biochem J. 1961 Sep;80:649–654. doi: 10.1042/bj0800649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rietjens I. M., Alink G. M., Vos R. M. The role of glutathione and changes in thiol homeostasis in cultured lung cells exposed to ozone. Toxicology. 1985 Jun 14;35(3):207–217. doi: 10.1016/0300-483x(85)90016-2. [DOI] [PubMed] [Google Scholar]
  19. Santus R., Kohen C., Kohen E., Reyftmann J. P., Morliere P., Dubertret L., Tocci P. M. Permeation of lysosomal membranes in the course of photosensitization with methylene blue and hematoporphyrin: study by cellular microspectrofluorometry. Photochem Photobiol. 1983 Jul;38(1):71–77. doi: 10.1111/j.1751-1097.1983.tb08368.x. [DOI] [PubMed] [Google Scholar]
  20. Shinriki N., Ishizaki K., Sato S., Miura K., Sawadaishi K., Ueda T. Degradation of nucleic acids with ozone. VI. Labilization of the double-helical structure of calf thymus deoxyribonucleic acid. Chem Pharm Bull (Tokyo) 1984 Sep;32(9):3636–3640. doi: 10.1248/cpb.32.3636. [DOI] [PubMed] [Google Scholar]
  21. WU R., RACKER E. Regulatory mechanisms in carbohydrate metabolism. III. Limiting factors in glycolysis of ascites tumor cells. J Biol Chem. 1959 May;234(5):1029–1035. [PubMed] [Google Scholar]
  22. van der Zee J., Dubbelman T. M., van Steveninck J. Peroxide-induced membrane damage in human erythrocytes. Biochim Biophys Acta. 1985 Aug 8;818(1):38–44. doi: 10.1016/0005-2736(85)90135-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES