Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Apr 1;243(1):55–59. doi: 10.1042/bj2430055

Release of iron from ferritin by xanthine oxidase. Role of the superoxide radical.

B J Bolann, R J Ulvik
PMCID: PMC1147813  PMID: 3038086

Abstract

Mobilization of iron from ferritin by xanthine oxidase was studied under aerobic and anaerobic conditions. Aerobic iron release amounted to approx. 3.7 nmol/ml in 10 min. This amount was decreased by approx. 30% under anaerobic conditions. Aerobic iron mobilization involved two mechanisms. About 70% was released by O2.- generated by xanthine oxidase. The rest was released by O2(.-)-independent mechanisms, which also accounted for the total iron release when O2 was absent. A possible transfer of reducing equivalents directly from xanthine oxidase to ferritin is discussed. The results imply that, in pathological conditions with increased formation of O2.-, iron may be released from ferritin. Furthermore, in hypoxic tissues xanthine oxidase can release iron from ferritin by an O2(.-)-independent process. Free iron is liable to catalyse the formation of the extremely reactive and damaging OH. radical.

Full text

PDF
55

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M. The respiratory burst of phagocytes. J Clin Invest. 1984 Mar;73(3):599–601. doi: 10.1172/JCI111249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biemond P., van Eijk H. G., Swaak A. J., Koster J. F. Iron mobilization from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes. Possible mechanism in inflammation diseases. J Clin Invest. 1984 Jun;73(6):1576–1579. doi: 10.1172/JCI111364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Cadenas E., Sies H. Low-level chemiluminescence as an indicator of singlet molecular oxygen in biological systems. Methods Enzymol. 1984;105:221–231. doi: 10.1016/s0076-6879(84)05029-1. [DOI] [PubMed] [Google Scholar]
  5. Carlin G., Djursäter R. Xanthine oxidase induced depolymerization of hyaluronic acid in the presence of ferritin. FEBS Lett. 1984 Nov 5;177(1):27–30. doi: 10.1016/0014-5793(84)80974-6. [DOI] [PubMed] [Google Scholar]
  6. Duggan D. E., Streeter K. B. Inhibition of ferritin reduction by pyrazolo(3,4d)pyrimidines. Arch Biochem Biophys. 1973 May;156(1):66–70. doi: 10.1016/0003-9861(73)90341-x. [DOI] [PubMed] [Google Scholar]
  7. Ford G. C., Harrison P. M., Rice D. W., Smith J. M., Treffry A., White J. L., Yariv J. Ferritin: design and formation of an iron-storage molecule. Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):551–565. doi: 10.1098/rstb.1984.0046. [DOI] [PubMed] [Google Scholar]
  8. Grace N. D., Greenwald M. A., Greenberg M. S. Effect of allopurinol on iron mobilization. Gastroenterology. 1970 Jul;59(1):103–108. [PubMed] [Google Scholar]
  9. Gutteridge J. M., Halliwell B., Treffry A., Harrison P. M., Blake D. Effect of ferritin-containing fractions with different iron loading on lipid peroxidation. Biochem J. 1983 Feb 1;209(2):557–560. doi: 10.1042/bj2090557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Halliwell B., Gutteridge J. M. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch Biochem Biophys. 1986 May 1;246(2):501–514. doi: 10.1016/0003-9861(86)90305-x. [DOI] [PubMed] [Google Scholar]
  11. Hochstein P., Hatch L., Sevanian A. Uric acid: functions and determination. Methods Enzymol. 1984;105:162–166. doi: 10.1016/s0076-6879(84)05022-9. [DOI] [PubMed] [Google Scholar]
  12. Jacobs A. An intracellular transit iron pool. Ciba Found Symp. 1976 Dec 7;(51):91–106. doi: 10.1002/9780470720325.ch5. [DOI] [PubMed] [Google Scholar]
  13. Jones T., Spencer R., Walsh C. Mechanism and kinetics of iron release from ferritin by dihydroflavins and dihydroflavin analogues. Biochemistry. 1978 Sep 19;17(19):4011–4017. doi: 10.1021/bi00612a021. [DOI] [PubMed] [Google Scholar]
  14. Koster J. F., Slee R. G. Ferritin, a physiological iron donor for microsomal lipid peroxidation. FEBS Lett. 1986 Apr 7;199(1):85–88. doi: 10.1016/0014-5793(86)81228-5. [DOI] [PubMed] [Google Scholar]
  15. MARGOLIASH E., FROHWIRT N. Spectrum of horse-heart cytochrome c. Biochem J. 1959 Mar;71(3):570–572. doi: 10.1042/bj0710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MAZUR A., GREEN S., SAHA A., CARLETON A. Mechanism of release of ferritin iron in vivo by xanthine oxidase. J Clin Invest. 1958 Dec;37(12):1809–1817. doi: 10.1172/JCI103774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  18. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  19. McCord J. M., Roy R. S. The pathophysiology of superoxide: roles in inflammation and ischemia. Can J Physiol Pharmacol. 1982 Nov;60(11):1346–1352. doi: 10.1139/y82-201. [DOI] [PubMed] [Google Scholar]
  20. Nagano T., Fridovich I. Does the aerobic xanthine oxidase reaction generate singlet oxygen? Photochem Photobiol. 1985 Jan;41(1):33–37. doi: 10.1111/j.1751-1097.1985.tb03444.x. [DOI] [PubMed] [Google Scholar]
  21. O'Connell M. J., Ward R. J., Baum H., Peters T. J. The role of iron in ferritin- and haemosiderin-mediated lipid peroxidation in liposomes. Biochem J. 1985 Jul 1;229(1):135–139. doi: 10.1042/bj2290135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schacter L. P. Measurement of free radical oxygen generation by cytochrome c reduction requirement for cytochrome c oxidase blockade. Biochem Biophys Res Commun. 1985 Feb 28;127(1):354–357. doi: 10.1016/s0006-291x(85)80166-2. [DOI] [PubMed] [Google Scholar]
  23. Thomas C. E., Morehouse L. A., Aust S. D. Ferritin and superoxide-dependent lipid peroxidation. J Biol Chem. 1985 Mar 25;260(6):3275–3280. [PubMed] [Google Scholar]
  24. Topham R. W., Jackson M. R., Joslin S. A., Walker M. C. Studies of the ferroxidase activity of native and chemically modified xanthine oxidoreductase. Biochem J. 1986 Apr 1;235(1):39–44. doi: 10.1042/bj2350039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Topham R. W., Walker M. C., Calisch M. P. Liver xanthine dehydrogenase and iron mobilization. Biochem Biophys Res Commun. 1982 Dec 31;109(4):1240–1246. doi: 10.1016/0006-291x(82)91910-6. [DOI] [PubMed] [Google Scholar]
  26. Ulvik R., Romslo I. Studies on the mobilization of iron from ferritin by isolated rat liver mitochondria. Biochim Biophys Acta. 1979 Dec 3;588(2):256–271. doi: 10.1016/0304-4165(79)90209-5. [DOI] [PubMed] [Google Scholar]
  27. Ulvik R., Romslo I. Studies on the utilization of ferritin iron in the ferrochelatase reaction of isolated rat liver mitochondria. Biochim Biophys Acta. 1978 Jun 15;541(2):251–262. doi: 10.1016/0304-4165(78)90398-7. [DOI] [PubMed] [Google Scholar]
  28. Watt G. D., Frankel R. B., Papaefthymiou G. C. Reduction of mammalian ferritin. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3640–3643. doi: 10.1073/pnas.82.11.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. White B. C., Krause G. S., Aust S. D., Eyster G. E. Postischemic tissue injury by iron-mediated free radical lipid peroxidation. Ann Emerg Med. 1985 Aug;14(8):804–809. doi: 10.1016/s0196-0644(85)80062-7. [DOI] [PubMed] [Google Scholar]
  30. Williams D. M., Lee G. R., Cartwright G. E. The role of superoxide anion radical in the reduction of ferritin iron by xanthine oxidase. J Clin Invest. 1974 Feb;53(2):665–667. doi: 10.1172/JCI107603. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES