Abstract
A novel method was developed for the analysis of the interaction of large multivalent ligands with surfaces (matrices) to analyse the binding of complement subcomponent C1q to immune precipitates. Our new evaluation method provides quantitative data characteristic of the C1q-immune-complex interaction and of the structure of the immune complex as well. To reveal the functional role of domain-domain interactions in the Fc part of IgG the binding of C1q to different anti-ovalbumin IgG-ovalbumin immune complexes was studied. Immune-complex precipitates composed of rabbit IgG in which the non-covalent or covalent bonds between the heavy chains had been eliminated were used. Non-covalent bonds were abolished by splitting off the CH3 domains, i.e. by using Facb fragments, and the covalent contact was broken by reduction and alkylation of the single inter-heavy-chain disulphide bond. The quantitative analysis of the binding curves provides a dissociation constant (K) of 200 nM for the interaction between C1q and immune precipitate formed from native IgG. Surprisingly, for immune precipitates composed of Facb fragments or IgG in which the inter-heavy-chain disulphide bond had been selectively reduced and alkylated, stronger binding (K = 30 nM) was observed. In this case, however, changes in the structure of the immune-complex matrix were also detected. These structural changes may account for the strengthening of the C1q-immune-complex interaction, which can be strongly influenced by the flexibility and the binding-site pattern of the immune-complex precipitates. These results suggest that domain-domain interactions in the Fc part of IgG affect the segmental mobility of IgG molecules and the spatial arrangement of the immune-complex matrix rather than the affinity of individual C1q-binding sites on IgG.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan R., Isliker H. Studies on the complement-binding site of rabbit immunoglobulin G-11. The reaction of rabbit IgG and its fragments with Clq. Immunochemistry. 1974 May;11(5):243–248. doi: 10.1016/0019-2791(74)90202-x. [DOI] [PubMed] [Google Scholar]
- Allan R., Isliker H. Studies on the complement-binding site of rabbit immunoglobulin G. I. Modification of tryptophan residues and their role in anticomplementary activity of rabbit IgG. Immunochemistry. 1974 Apr;11(4):175–180. doi: 10.1016/0019-2791(74)90325-5. [DOI] [PubMed] [Google Scholar]
- Augener W., Grey H. M., Cooper N. R., Müller-Eberhard H. J. The reaction of monomeric and aggregated immunoglobulins with C1. Immunochemistry. 1971 Nov;8(11):1011–1020. doi: 10.1016/0019-2791(71)90489-7. [DOI] [PubMed] [Google Scholar]
- Borsos T., Loos M., Chapuis R. M., Medicus R., Isliker H. A novel way of relating the structure of Cl1 to the hemolytic activity of the first component of complement. Mol Immunol. 1980 Nov;17(11):1415–1421. doi: 10.1016/0161-5890(80)90011-5. [DOI] [PubMed] [Google Scholar]
- Boyd J., Easterbrook-Smith S. B., Závodszky P., Mountford-Wright C., Dwek R. A. Mobility and symmetry in the Fc and pFc' fragments as probed by 1H NMR. Mol Immunol. 1979 Nov;16(11):851–858. doi: 10.1016/0161-5890(79)90084-1. [DOI] [PubMed] [Google Scholar]
- Burton D. R., Boyd J., Brampton A. D., Easterbrook-Smith S. B., Emanuel E. J., Novotny J., Rademacher T. W., van Schravendijk M. R., Sternberg M. J., Dwek R. A. The Clq receptor site on immunoglobulin G. Nature. 1980 Nov 27;288(5789):338–344. doi: 10.1038/288338a0. [DOI] [PubMed] [Google Scholar]
- Cohen S., Becker E. L. The effect of benzylation or sequential amidinationand benzylation on the ability of rabbit gamma-G-antibody to fix complement. J Immunol. 1968 Feb;100(2):403–406. [PubMed] [Google Scholar]
- Cohen S., Becker E. L. The effect of carbamylation and amidination of rabbit gamma-G-antibody on its ability to fix complement. J Immunol. 1968 Feb;100(2):395–402. [PubMed] [Google Scholar]
- Colomb M., Porter R. R. Characterization of a plasmin-digest fragment of rabbit immunoglobulin gamma that binds antigen and complement. Biochem J. 1975 Feb;145(2):177–183. doi: 10.1042/bj1450177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutsch D. G., Mertz E. T. Plasminogen: purification from human plasma by affinity chromatography. Science. 1970 Dec 4;170(3962):1095–1096. doi: 10.1126/science.170.3962.1095. [DOI] [PubMed] [Google Scholar]
- Füst G., Medgyesi G. A., Rajnavölgyi E., Csécsi-Nagy M., Czikora K., Gergely J. Possible mechanisms of the first step of the classical complement activation pathway: binding and activation of C1. Immunology. 1978 Dec;35(6):873–884. [PMC free article] [PubMed] [Google Scholar]
- Hanson D. C., Siegel R. C., Schumaker V. N. Segmental flexibility of the C1q subcomponent of human complement and its possible role in the immune response. J Biol Chem. 1985 Mar 25;260(6):3576–3583. [PubMed] [Google Scholar]
- Heusser C., Boesman M., Nordin J. H., Isliker H. Effect of chemical and enzymatic radioiodination on in vitro human Clq activities. J Immunol. 1973 Mar;110(3):820–828. [PubMed] [Google Scholar]
- Huber R. Spatial structure of immunoglobulin molecules. Klin Wochenschr. 1980 Nov 17;58(22):1217–1231. doi: 10.1007/BF01478928. [DOI] [PubMed] [Google Scholar]
- Hughes-Jones N. C. Functional affinity constants of the reaction between 125I-labelled C1q and C1q binders and their use in the measurement of plasma C1q concentrations. Immunology. 1977 Feb;32(2):191–198. [PMC free article] [PubMed] [Google Scholar]
- ISHIZAKA K., ISHIZAKA T., BANOVITZ J. COMPLEMENT-FIXING ACTIVITY OF RABBIT ANTIBODY RECONSTRUCTED FROM HALF MOLECULES. Proc Soc Exp Biol Med. 1965 Feb;118:507–511. doi: 10.3181/00379727-118-29890. [DOI] [PubMed] [Google Scholar]
- Isenman D. E., Dorrington K. J., Painter R. H. The structure and function of immunoglobulin domains. II. The importance of interchain disulfide bonds and the possible role of molecular flexibility in the interaction between immunoglobulin G and complement. J Immunol. 1975 Jun;114(6):1726–1729. [PubMed] [Google Scholar]
- Jaton J. C., Huser H., Braun D. G., Givol D., Pecht I., Schlessinger J. Conformational changes induced in a homogeneous anti-type III pneumococcal antibody by oligosaccharides of increasing size. Biochemistry. 1975 Dec 2;14(24):5312–5315. doi: 10.1021/bi00695a014. [DOI] [PubMed] [Google Scholar]
- Johnson B. A., Hoffmann L. G. Effect of reduction and alkylation on structure and function of rabbit IgG antibody--II. Effects on classical pathway C3 convertase formation. Mol Immunol. 1984 Jan;21(1):77–87. doi: 10.1016/0161-5890(84)90092-0. [DOI] [PubMed] [Google Scholar]
- Johnson B. A., Hoffmann L. G. Effect of reduction and alkylation on structure and function of rabbit IgG antibody-I. Effect on ability to activate complement depends on conditions of reduction. Mol Immunol. 1981 Mar;18(3):181–188. doi: 10.1016/0161-5890(81)90084-5. [DOI] [PubMed] [Google Scholar]
- Lancet D., Pecht I. Kinetic evidence for hapten-induced conformational transition in immunoglobin MOPC 460. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3549–3553. doi: 10.1073/pnas.73.10.3549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leatherbarrow R. J., Dwek R. A. Binding of complement subcomponent C1q to mouse IgG1, IgG2a and IgG2b: a novel C1q binding assay. Mol Immunol. 1984 Apr;21(4):321–327. doi: 10.1016/0161-5890(84)90103-2. [DOI] [PubMed] [Google Scholar]
- Liberti P. A., Bausch D. M., Schoenberg L. M. On the mechanism of Clq binding to antibody-I. aggregation and/or distortion of IgG vs combining site-transmitted effects. Mol Immunol. 1982 Jan;19(1):143–149. doi: 10.1016/0161-5890(82)90256-5. [DOI] [PubMed] [Google Scholar]
- Lin T. Y., Fletcher D. S. Interaction of human Clq with insoluble immunoglobulin aggregates. Immunochemistry. 1978 Feb;15(2):107–117. doi: 10.1016/0161-5890(78)90050-0. [DOI] [PubMed] [Google Scholar]
- Müller-Eberhard H. J. Complement. Annu Rev Biochem. 1975;44:697–724. doi: 10.1146/annurev.bi.44.070175.003405. [DOI] [PubMed] [Google Scholar]
- Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
- Oi V. T., Vuong T. M., Hardy R., Reidler J., Dangle J., Herzenberg L. A., Stryer L. Correlation between segmental flexibility and effector function of antibodies. Nature. 1984 Jan 12;307(5947):136–140. doi: 10.1038/307136a0. [DOI] [PubMed] [Google Scholar]
- Ovary Z., Saluk P. H., Quijada L., Lamm M. E. Biologic activities of rabbit immunoglobulin G in relation to domains of the Fc region. J Immunol. 1976 May;116(5):1265–1271. [PubMed] [Google Scholar]
- PALMER J. L., NISONOFF A. DISSOCIATION OF RABBIT GAMMA-GLOBULIN INTO HALF-MOLECULES AFTER REDUCTION OF ONE LABILE DISULFIDE BOND. Biochemistry. 1964 Jun;3:863–869. doi: 10.1021/bi00894a024. [DOI] [PubMed] [Google Scholar]
- Painter R. H. The C1q receptor site on human immunoglobulin G. Can J Biochem Cell Biol. 1984 Jun;62(6):418–425. doi: 10.1139/o84-057. [DOI] [PubMed] [Google Scholar]
- Perkins S. J. Molecular modelling of human complement subcomponent C1q and its complex with C1r2C1s2 derived from neutron-scattering curves and hydrodynamic properties. Biochem J. 1985 May 15;228(1):13–26. doi: 10.1042/bj2280013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Press E. M. Fixation of the first component of complement by immune complexes: effect of reduction and fragmentation of antibody. Biochem J. 1975 Jul;149(1):285–288. doi: 10.1042/bj1490285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schumaker V. N., Poon P. H., Seegan G. W., Smith C. A. Semi-flexible joint in the C1q subunit of the first component of human complement. J Mol Biol. 1981 May 15;148(2):191–197. doi: 10.1016/0022-2836(81)90511-8. [DOI] [PubMed] [Google Scholar]
- Shelton E., Yonemasu K., Stroud R. M. Ultrastructure of the human complement component, Clq (negative staining-glutamine synthetase-biologically active Clq). Proc Natl Acad Sci U S A. 1972 Jan;69(1):65–68. doi: 10.1073/pnas.69.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shelton E., Yonemasu K., Stroud R. M. Ultrastructure of the human complement component, Clq (negative staining-glutamine synthetase-biologically active Clq). Proc Natl Acad Sci U S A. 1972 Jan;69(1):65–68. doi: 10.1073/pnas.69.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sledge C. R., Bing D. H. Binding properties of the human complement protein Clq. J Biol Chem. 1973 Apr 25;248(8):2818–2823. [PubMed] [Google Scholar]
- Sutton J., Alden J. R., Easterbrook-Smith S. B. The effects of cleavage of the inter-chain disulphide bonds of rabbit IgG on its ability to bind C1q. Biochim Biophys Acta. 1984 May 31;787(1):39–44. doi: 10.1016/0167-4838(84)90105-5. [DOI] [PubMed] [Google Scholar]
- Tenner A. J., Lesavre P. H., Cooper N. R. Purification and radiolabeling of human C1q. J Immunol. 1981 Aug;127(2):648–653. [PubMed] [Google Scholar]
- Thompson J. J., Hoffmann L. G. Cooperative binding of a complement component to antigen-antibody complexes--I: complexes containing rabbit IgG antibody. Immunochemistry. 1974 Aug;11(8):431–445. doi: 10.1016/0019-2791(74)90077-9. [DOI] [PubMed] [Google Scholar]
- Tschopp J., Villiger W., Lustig A., Jaton J. C., Engel J. Antigen-independent binding of IgG dimers to C 1 q as studied by sedimentation equilibrium, complement fixation and electron microscopy. Eur J Immunol. 1980 Jul;10(7):529–535. doi: 10.1002/eji.1830100709. [DOI] [PubMed] [Google Scholar]
- Vivanco-Martínez F., Bragado R., Albar J. P., Juarez C., Ortíz-Masllorens F. Chemical modification of carboxyl groups in human Fc gamma fragments: structural role and effect on the complement fixation. Mol Immunol. 1980 Mar;17(3):327–336. doi: 10.1016/0161-5890(80)90053-x. [DOI] [PubMed] [Google Scholar]
- Wright J. K., Tschopp J., Jaton J. C., Engel J. Dimeric, trimeric and tetrameric complexes of immunoglobulin G fix complement. Biochem J. 1980 Jun 1;187(3):775–780. doi: 10.1042/bj1870775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zavodszky P., Easterbrook-Smith S. B., Dwek R. A. The isolation of a globular fragment of rabbit immunoglobulin G probably corresponding to the intact C gamma 2 homology region. Mol Immunol. 1979 Nov;16(11):899–905. doi: 10.1016/0161-5890(79)90088-9. [DOI] [PubMed] [Google Scholar]


