Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Apr 15;243(2):533–539. doi: 10.1042/bj2430533

Identification and characterization of a Ca2+-calmodulin-sensitive cyclic nucleotide phosphodiesterase in a human lymphoblastoid cell line.

P M Epstein, S Moraski Jr, R Hachisu
PMCID: PMC1147887  PMID: 2820385

Abstract

This study examines the pattern and regulatory properties of cyclic nucleotide phosphodiesterases in a human lymphoblastoid B-cell line (RPMI 8392) established from a patient with acute lymphocytic leukaemia. In this cell line, phosphodiesterase activity measured at 0.25 microM-cyclic AMP is approx. 7-fold greater than that in isolated human peripheral-blood lymphocytes, and 16% of the phosphodiesterase activity in RPMI 8392 cells is associated with particulate fractions. Phosphodiesterase activity in crude fractions of this cell line is reproducibly stimulated by about 60-80% by Ca2+-calmodulin. In the presence of 20 nM-calmodulin, half-maximal stimulation occurs at 0.7 microM-Ca2+. The cytosolic phosphodiesterase activity of RPMI 8392 cells is separated into two forms by DEAE-Sephacel chromatography. The first form is eluted at approx. 0.2 M-sodium acetate, catalyses the hydrolysis of both cyclic AMP and cyclic GMP, and is stimulated 3-fold by Ca2+-calmodulin. This form exhibits non-linear kinetics for cyclic AMP in the absence of calmodulin, with extrapolated Km values of 0.8 and 4 microM, and non-linear kinetics in the presence of calmodulin, with extrapolated Km values of 0.5 and 1 microM. The Vmax. values are increased approx. 3-fold by calmodulin. The second form is eluted at approx. 0.6 M-sodium acetate, is specific for cyclic AMP, and insensitive to stimulation by Ca2+-calmodulin. The Ca2+-calmodulin-sensitive phosphodiesterase from the DEAE-Sephacel column can be adsorbed to a calmodulin-Sepharose affinity column and eluted with EGTA. This enzymic activity can also be immunoprecipitated by a monoclonal antibody directed against a calmodulin-bovine heart phosphodiesterase complex. This study documents the existence of Ca2+-calmodulin-sensitive phosphodiesterase in a cultured lymphoblastoid cell line derived from a leukaemic patient.

Full text

PDF
533

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beavo J. A., Hansen R. S., Harrison S. A., Hurwitz R. L., Martins T. J., Mumby M. C. Identification and properties of cyclic nucleotide phosphodiesterases. Mol Cell Endocrinol. 1982 Nov-Dec;28(3):387–410. doi: 10.1016/0303-7207(82)90135-6. [DOI] [PubMed] [Google Scholar]
  2. Boynton A. L., Whitfield J. Calmodulin and cyclic AMP-dependent protein kinases mediate calcium-induced stimulation of DNA synthesis by rat liver cells. Adv Cyclic Nucleotide Res. 1981;14:411–419. [PubMed] [Google Scholar]
  3. Chafouleas J. G., Bolton W. E., Hidaka H., Boyd A. E., 3rd, Means A. R. Calmodulin and the cell cycle: involvement in regulation of cell-cycle progression. Cell. 1982 Jan;28(1):41–50. doi: 10.1016/0092-8674(82)90373-7. [DOI] [PubMed] [Google Scholar]
  4. Chafouleas J. G., Pardue R. L., Brinkley B. R., Dedman J. R., Means A. R. Regulation of intracellular levels of calmodulin and tubulin in normal and transformed cells. Proc Natl Acad Sci U S A. 1981 Feb;78(2):996–1000. doi: 10.1073/pnas.78.2.996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Connor C. G., Moore P. B., Brady R. C., Horn J. P., Arlinghaus R. B., Dedman J. R. The role of calmodulin in cell transformation. Biochem Biophys Res Commun. 1983 Apr 29;112(2):647–654. doi: 10.1016/0006-291x(83)91512-7. [DOI] [PubMed] [Google Scholar]
  6. Durham A. C., Walton J. M. Calcium ions and the control of proliferation in normal and cancer cells. Biosci Rep. 1982 Jan;2(1):15–30. doi: 10.1007/BF01142195. [DOI] [PubMed] [Google Scholar]
  7. Engerson T., Legendre J. L., Jones H. P. Calmodulin-dependency of human neutrophil phosphodiesterase. Inflammation. 1986 Mar;10(1):31–35. doi: 10.1007/BF00916038. [DOI] [PubMed] [Google Scholar]
  8. Epstein P. M., Andrenyak D. M., Smith C. J., Pappano A. J. Ontogenetic changes in adenylate cyclase, cyclic AMP phosphodiesterase and calmodulin in chick ventricular myocardium. Biochem J. 1987 Apr 15;243(2):525–531. doi: 10.1042/bj2430525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Epstein P. M., Fiss K., Hachisu R., Andrenyak D. M. Interaction of calcium antagonists with cyclic AMP phosphodiesterases and calmodulin. Biochem Biophys Res Commun. 1982 Apr 14;105(3):1142–1149. doi: 10.1016/0006-291x(82)91089-0. [DOI] [PubMed] [Google Scholar]
  10. Epstein P. M., Hachisu R. Cyclic nucleotide phosphodiesterase in normal and leukemic human lymphocytes and lymphoblasts. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;16:303–324. [PubMed] [Google Scholar]
  11. Epstein P. M., Mills J. S., Hersh E. M., Strada S. J., Thompson W. J. Activation of cyclic nucleotide phosphodiesterase from isolated human peripheral blood lymphocytes by mitogenic agents. Cancer Res. 1980 Feb;40(2):379–386. [PubMed] [Google Scholar]
  12. Epstein P. M., Mills J. S., Ross C. P., Strada S. J., Hersh E. M., Thompson W. J. Increased cyclic nucleotide phosphodiesterase activity associated with proliferation and cancer in human and murine lymphoid cells. Cancer Res. 1977 Nov;37(11):4016–4023. [PubMed] [Google Scholar]
  13. Geremia R., Rossi P., Mocini D., Pezzotti R., Conti M. Characterization of a calmodulin-dependent high-affinity cyclic AMP and cyclic GMP phosphodiesterase from male mouse germ cells. Biochem J. 1984 Feb 1;217(3):693–700. doi: 10.1042/bj2170693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HOFSTEE B. H. J. On the evaluation of the constants Vm and KM in enzyme reactions. Science. 1952 Sep 26;116(3013):329–331. doi: 10.1126/science.116.3013.329. [DOI] [PubMed] [Google Scholar]
  15. Hait W. N., Weiss B. Characteristics of the cyclic nucleotide phosphodiesterases of normal and leukemic lymphocytes. Biochim Biophys Acta. 1977 Mar 29;497(1):86–100. doi: 10.1016/0304-4165(77)90141-6. [DOI] [PubMed] [Google Scholar]
  16. Hait W. N., Weiss B. Cyclic nucleotide phosphodiesterase of normal and leukemic lymphocytes. Kinetic properties and selective alteration of the activity of the multiple molecular forms. Mol Pharmacol. 1979 Nov;16(3):851–864. [PubMed] [Google Scholar]
  17. Hidaka H., Sasaki Y., Tanaka T., Endo T., Ohno S., Fujii Y., Nagata T. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4354–4357. doi: 10.1073/pnas.78.7.4354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klee C. B., Krinks M. H. Purification of cyclic 3',5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry. 1978 Jan 10;17(1):120–126. doi: 10.1021/bi00594a017. [DOI] [PubMed] [Google Scholar]
  19. LaPorte D. C., Gidwitz S., Weber M. J., Storm D. R. Relationship between changes in the calcium dependent regulatory protein and adenylate cyclase during viral transformation. Biochem Biophys Res Commun. 1979 Feb 28;86(4):1169–1177. doi: 10.1016/0006-291x(79)90240-7. [DOI] [PubMed] [Google Scholar]
  20. Lagarde A., Colobert L. Cyclic 3',5'-AMP phosphodiesterase of human blood lymphocytes. Biochim Biophys Acta. 1972 Aug 28;276(2):444–453. doi: 10.1016/0005-2744(72)91006-6. [DOI] [PubMed] [Google Scholar]
  21. Monahan T. M., Marchand N. W., Fritz R. R., Abell C. W. Cyclic adenosine 3':5'-monophosphate levels and activities of related enzymes in normal and leukemic lymphocytes. Cancer Res. 1975 Sep;35(9):2540–2547. [PubMed] [Google Scholar]
  22. Onali P., Strada S. J., Chang L., Epstein P. M., Hersh E. M., Thompson W. J. Purification and characterization of high-affinity cyclic adenosine 5'-monophosphate phosphodiesterases from human acute myelogenous leukemic cells. Cancer Res. 1985 Mar;45(3):1384–1391. [PubMed] [Google Scholar]
  23. Purvis K., Olsen A., Hansson V. Calmodulin-dependent cyclic nucleotide phosphodiesterases in the immature rat testis. J Biol Chem. 1981 Nov 25;256(22):11434–11441. [PubMed] [Google Scholar]
  24. Rodan S. B., Golub E. E., Egan J. J., Rodan G. A. Comparison of bone and osteosarcoma adenylate cyclase. Effects of Mg2+, Ca2+, ATP4- and HATP3- in the assay mixture. Biochem J. 1980 Mar 1;185(3):629–637. doi: 10.1042/bj1850629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smoake J. A., Johnson L. S., Peake G. T. Calmodulin-dependent high-affinity cyclic AMP phosphodiesterase in liver membranes. Arch Biochem Biophys. 1981 Feb;206(2):331–335. doi: 10.1016/0003-9861(81)90098-9. [DOI] [PubMed] [Google Scholar]
  26. Smolen J. E., Geosits S. J. Human neutrophil phosphodiesterase. Calmodulin insensitivity and other properties. Inflammation. 1984 Jun;8(2):193–199. doi: 10.1007/BF00916094. [DOI] [PubMed] [Google Scholar]
  27. Strada S. J., Thompson W. J. Multiple forms of cyclic nucleotide phosphodiesterases: anomalies or biologic regulators? Adv Cyclic Nucleotide Res. 1978;9:265–283. [PubMed] [Google Scholar]
  28. Takemoto D. J., Lee W. N., Kaplan S. A., Appleman M. M. Cyclic AMP phosphodiesterase in human lymphocytes and lymphoblasts. J Cyclic Nucleotide Res. 1978 Apr;4(2):123–132. [PubMed] [Google Scholar]
  29. Takemoto D., Jilka C. Increased content of calmodulin in human leukemia cells. Leuk Res. 1983;7(1):97–100. doi: 10.1016/0145-2126(83)90062-0. [DOI] [PubMed] [Google Scholar]
  30. Thompson W. J., Ross C. P., Pledger W. J., Strada S. J., Banner R. L., Hersh E. M. Cyclic adenosine 3':5'-monophosphate phosphodiesterase. Distinct forms in human lymphocytes and monocytes. J Biol Chem. 1976 Aug 25;251(16):4922–4929. [PubMed] [Google Scholar]
  31. Thompson W. J., Ross C. P., Strada S. J., Hersh E. M., Lavis V. R. Comparative analyses of cyclic adenosine 3':5'-monophosphate phosphodiesterases of human peripheral blood monocytes and cultured P388D1 cells. Cancer Res. 1980 Jun;40(6):1955–1960. [PubMed] [Google Scholar]
  32. Thompson W. J., Terasaki W. L., Epstein P. M., Strada S. J. Assay of cyclic nucleotide phosphodiesterase and resolution of multiple molecular forms of the enzyme. Adv Cyclic Nucleotide Res. 1979;10:69–92. [PubMed] [Google Scholar]
  33. Vandermeers A., Vandermeers-Piret M. C., Rathe J., Christophe J. Purification and kinetic properties of two soluble forms of calmodulin-dependent cyclic nucleotide phosphodiesterase from rat pancreas. Biochem J. 1983 May 1;211(2):341–347. doi: 10.1042/bj2110341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Volpi M., Sha'afi R. I., Epstein P. M., Andrenyak D. M., Feinstein M. B. Local anesthetics, mepacrine, and propranolol are antagonists of calmodulin. Proc Natl Acad Sci U S A. 1981 Feb;78(2):795–799. doi: 10.1073/pnas.78.2.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Watterson D. M., Van Eldik L. J., Smith R. E., Vanaman T. C. Calcium-dependent regulatory protein of cyclic nucleotide metabolism in normal and transformed chicken embryo fibroblasts. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2711–2715. doi: 10.1073/pnas.73.8.2711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wedner H. J., Chan B. Y., Parker C. S., Parker C. W. Cyclic nucleotide phosphodiesterase activity in human peripheral blood lymphocytes and monocytes. J Immunol. 1979 Aug;123(2):725–732. [PubMed] [Google Scholar]
  37. Wei J. W., Hickie R. A. Increased content of calmodulin in Morris hepatoma 5123 t.c. (h). Biochem Biophys Res Commun. 1981 Jun;100(4):1562–1568. doi: 10.1016/0006-291x(81)90697-5. [DOI] [PubMed] [Google Scholar]
  38. Wei J. W., Morris H. P., Hickie R. A. Positive correlation between calmodulin content and hepatoma growth rates. Cancer Res. 1982 Jul;42(7):2571–2574. [PubMed] [Google Scholar]
  39. Wells J. N., Hardman J. G. Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res. 1977;8:119–143. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES