Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 May 1;243(3):715–722. doi: 10.1042/bj2430715

The interaction in vivo of transferrin and asialotransferrin with liver cells.

T J van Berkel 1, C J Dekker 1, J K Kruijt 1, H G van Eijk 1
PMCID: PMC1147917  PMID: 2444207

Abstract

Rat transferrin or asialotransferrin doubly radiolabelled with 59Fe and 125I was injected into rats. A determination of extrahepatic and hepatic uptake indicated that asialotransferrin delivers a higher fraction of the injected 59Fe to the liver than does transferrin. In order to determine in vivo the intrahepatic recognition sites for transferrin and asialotransferrin, the liver was subfractionated into parenchymal, endothelial and Kupffer cells by a low-temperature cell isolation procedure. High-affinity recognition of transferrin (competed for by an excess of unlabelled transferrin) is exerted by parenchymal cells as well as endothelial and Kupffer cells with a 10-fold higher association (expressed per mg of cell protein) to the latter cell types. In all three cell types iron delivery occurs, as concluded from the increase in cellular 59Fe/125I ratio at prolonged circulation times of transferrin. It can be calculated that parenchymal cells are responsible for 50-60% of the interaction of transferrin with the liver, 20-30% is associated with endothelial cells and about 20% with Kupffer cells. For asialotransferrin a higher fraction of the injected dose becomes associated with parenchymal cells as well as with endothelial and Kupffer cells. Competition experiments in vivo with various sugars indicated that the increased interaction of asialotransferrin with parenchymal cells is specifically inhibited by N-acetylgalactosamine whereas mannan specifically inhibits the increased interaction of asialotransferrin with endothelial and Kupffer cells. Recognition of asialotransferrin by galactose receptors from parenchymal cells or mannose receptors from endothelial and Kupffer cells is coupled to active 59Fe delivery to the cells. It is concluded that, as well as parenchymal cells, liver endothelial and Kupffer cells are also quantitatively important intrahepatic sites for transferrin and asialotransferrin metabolism, an interaction exerted by multiple recognition sites on the various cell types.

Full text

PDF
715

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achord D. T., Brot F. E., Bell C. E., Sly W. S. Human beta-glucuronidase: in vivo clearance and in vitro uptake by a glycoprotein recognition system on reticuloendothelial cells. Cell. 1978 Sep;15(1):269–278. doi: 10.1016/0092-8674(78)90102-2. [DOI] [PubMed] [Google Scholar]
  2. Aisen P., Listowsky I. Iron transport and storage proteins. Annu Rev Biochem. 1980;49:357–393. doi: 10.1146/annurev.bi.49.070180.002041. [DOI] [PubMed] [Google Scholar]
  3. Ashwell G., Morell A. G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):99–128. doi: 10.1002/9780470122860.ch3. [DOI] [PubMed] [Google Scholar]
  4. Ciechanover A., Schwartz A. L., Dautry-Varsat A., Lodish H. F. Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents. J Biol Chem. 1983 Aug 25;258(16):9681–9689. [PubMed] [Google Scholar]
  5. Cole E. S., Glass J. Transferrin binding and iron uptake in mouse hepatocytes. Biochim Biophys Acta. 1983 Feb 16;762(1):102–110. doi: 10.1016/0167-4889(83)90122-2. [DOI] [PubMed] [Google Scholar]
  6. Debanne M. T., Regoeczi E. Subcellular distribution of human asialotransferrin type 3 in the rat liver. J Biol Chem. 1981 Nov 10;256(21):11266–11272. [PubMed] [Google Scholar]
  7. Dekker C. J., Kroos M. J., Van der Heul C., Van Eijk H. G. Uptake of sialo and asialo transferrins by isolated rat hepatocytes. Comparison of a heterologous and a homologous system. Int J Biochem. 1985;17(6):701–706. doi: 10.1016/0020-711x(85)90368-4. [DOI] [PubMed] [Google Scholar]
  8. Grohlich D., Morley C. G., Bezkorovainy A. Some aspects of iron uptake by rat hepatocytes in suspension. Int J Biochem. 1979;10(10):797–802. doi: 10.1016/0020-711x(79)90051-x. [DOI] [PubMed] [Google Scholar]
  9. Harkes L., Van Berkel J. C. Quantitative role of parenchymal and non-parenchymal liver cells in the uptake of [14C]sucrose-labelled low-density lipoprotein in vivo. Biochem J. 1984 Nov 15;224(1):21–27. doi: 10.1042/bj2240021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hershko C., Cook J. D., Finch D. A. Storage iron kinetics. 3. Study of desferrioxamine action by selective radioiron labels of RE and parenchymal cells. J Lab Clin Med. 1973 Jun;81(6):876–886. [PubMed] [Google Scholar]
  11. Hubbard A. L., Wilson G., Ashwell G., Stukenbrok H. An electron microscope autoradiographic study of the carbohydrate recognition systems in rat liver. I. Distribution of 125I-ligands among the liver cell types. J Cell Biol. 1979 Oct;83(1):47–64. doi: 10.1083/jcb.83.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karin M., Mintz B. Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J Biol Chem. 1981 Apr 10;256(7):3245–3252. [PubMed] [Google Scholar]
  13. Kishimoto T., Tavassoli M. Endothelial binding of transferrin in fractionated liver cell suspensions. Biochim Biophys Acta. 1985 Jul 30;846(1):14–20. doi: 10.1016/0167-4889(85)90104-1. [DOI] [PubMed] [Google Scholar]
  14. Kolb-Bachofen V., Schlepper-Schäfer J., Vogell W., Kolb H. Electron microscopic evidence for an asialoglycoprotein receptor on Kupffer cells: localization of lectin-mediated endocytosis. Cell. 1982 Jul;29(3):859–866. doi: 10.1016/0092-8674(82)90447-0. [DOI] [PubMed] [Google Scholar]
  15. Morgan E. H., Smith G. D., Peters T. J. Uptake and subcellular processing of 59Fe-125I-labelled transferrin by rat liver. Biochem J. 1986 Jul 1;237(1):163–173. doi: 10.1042/bj2370163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Morley C. G., Bezkorovainy A. The behavior of transferrin receptors in rat hepatocyte plasma membranes. Clin Physiol Biochem. 1983;1(6):318–328. [PubMed] [Google Scholar]
  17. Nagelkerke J. F., Bakkeren H. F., Kuipers F., Vonk R. J., van Berkel T. J. Hepatic processing of the cholesteryl ester from low density lipoprotein in the rat. J Biol Chem. 1986 Jul 5;261(19):8908–8913. [PubMed] [Google Scholar]
  18. Nagelkerke J. F., Barto K. P., van Berkel T. J. In vivo and in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer, and parenchymal cells. J Biol Chem. 1983 Oct 25;258(20):12221–12227. [PubMed] [Google Scholar]
  19. Nagelkerke J. F., Havekes L., van Hinsbergh V. W., van Berkel T. J. In vivo catabolism of biologically modified LDL. Arteriosclerosis. 1984 May-Jun;4(3):256–264. doi: 10.1161/01.atv.4.3.256. [DOI] [PubMed] [Google Scholar]
  20. Octave J. N., Schneider Y. J., Crichton R. R., Trouet A. Transferrin uptake by cultured rat embryo fibroblasts. The influence of temperature and incubation time, subcellular distribution and short-term kinetic studies. Eur J Biochem. 1981 Apr;115(3):611–618. [PubMed] [Google Scholar]
  21. POLLYCOVE M., MORTIMER R. The quantitative determination of iron kinetics and hemoglobin synthesis in human subjects. J Clin Invest. 1961 May;40:753–782. doi: 10.1172/JCI104310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Page M. A., Baker E., Morgan E. H. Transferrin and iron uptake by rat hepatocytes in culture. Am J Physiol. 1984 Jan;246(1 Pt 1):G26–G33. doi: 10.1152/ajpgi.1984.246.1.G26. [DOI] [PubMed] [Google Scholar]
  23. Soda R., Tavassoli M. Liver endothelium and not hepatocytes or Kupffer cells have transferrin receptors. Blood. 1984 Feb;63(2):270–276. [PubMed] [Google Scholar]
  24. Steer C. J., Clarenburg R. Unique distribution of glycoprotein receptors on parenchymal and sinusoidal cells of rat liver. J Biol Chem. 1979 Jun 10;254(11):4457–4461. [PubMed] [Google Scholar]
  25. Tei I., Makino Y., Kadofuku T., Kanamaru I., Konno K. Increase of transferrin receptors in regenerating rat liver cells after partial hepatectomy. Biochem Biophys Res Commun. 1984 Jun 15;121(2):717–721. doi: 10.1016/0006-291x(84)90240-7. [DOI] [PubMed] [Google Scholar]
  26. Thorstensen K., Romslo I. Uptake of iron from transferrin by isolated hepatocytes. Biochim Biophys Acta. 1984 Jun 19;804(2):200–208. doi: 10.1016/0167-4889(84)90150-2. [DOI] [PubMed] [Google Scholar]
  27. Tolleshaug H. Intracellular segregation of asialo-transferrin and asialo-fetuin following uptake by the same receptor system in suspended hepatocytes. Biochim Biophys Acta. 1984 Mar 23;803(3):182–190. doi: 10.1016/0167-4889(84)90008-9. [DOI] [PubMed] [Google Scholar]
  28. Van Eijk H. G., Van Noort W. L. Isolation of rat transferrin using CNBr-activated sepharose 4B. J Clin Chem Clin Biochem. 1976 Oct;14(10):475–478. doi: 10.1515/cclm.1976.14.1-12.475. [DOI] [PubMed] [Google Scholar]
  29. Veldman A., Van der Heul C., Kroos M. J., Van Eijk H. G. Fluorescence probe measurement of the pH of the transferrin microenvironment during iron uptake by rat bone marrow erythroid cells. Br J Haematol. 1986 Jan;62(1):155–162. doi: 10.1111/j.1365-2141.1986.tb02912.x. [DOI] [PubMed] [Google Scholar]
  30. Wisse E. An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res. 1970 Apr;31(1):125–150. doi: 10.1016/s0022-5320(70)90150-4. [DOI] [PubMed] [Google Scholar]
  31. Young S. P., Aisen P. The interaction of transferrin with isolated hepatocytes. Biochim Biophys Acta. 1980 Dec 1;633(2):145–153. doi: 10.1016/0304-4165(80)90400-6. [DOI] [PubMed] [Google Scholar]
  32. Young S. P., Roberts S., Bomford A. Intracellular processing of transferrin and iron by isolated rat hepatocytes. Biochem J. 1985 Dec 15;232(3):819–823. doi: 10.1042/bj2320819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van Berkel T. J., Kruijt J. K., Kempen H. J. Specific targeting of high density lipoproteins to liver hepatocytes by incorporation of a tris-galactoside-terminated cholesterol derivative. J Biol Chem. 1985 Oct 5;260(22):12203–12207. [PubMed] [Google Scholar]
  34. van Berkel T. J., Kruijt J. K., Spanjer H. H., Nagelkerke J. F., Harkes L., Kempen H. J. The effect of a water-soluble tris-galactoside-terminated cholesterol derivative on the fate of low density lipoproteins and liposomes. J Biol Chem. 1985 Mar 10;260(5):2694–2699. [PubMed] [Google Scholar]
  35. van Renswoude J., Bridges K. R., Harford J. B., Klausner R. D. Receptor-mediated endocytosis of transferrin and the uptake of fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6186–6190. doi: 10.1073/pnas.79.20.6186. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES