Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 May 15;244(1):41–47. doi: 10.1042/bj2440041

Membrane-membrane interactions associated with rapid transfer of liposomal bilirubin to microsomal UDP-glucuronyltransferase. Relevance for hepatocellular transport and biotransformation of hydrophobic substrates.

D I Whitmer 1, P E Russell 1, J L Gollan 1
PMCID: PMC1147950  PMID: 3117037

Abstract

Bilirubin may be transported within intracellular membranes of the hepatocyte and may undergo membrane-membrane transfer to gain access to the conjugating enzyme UDP-glucuronyltransferase in the endoplasmic reticulum. We have demonstrated previously that the lipid composition of liposomal membranes incorporating bilirubin substrate influences the rate of transfer and glucuronidation of bilirubin by hepatic microsomes. To examine the mechanism(s) of substrate transfer, we incorporated radiolabelled bilirubin into small unilamellar model membranes of egg phosphatidylcholine or natural phospholipids in the proportions present in native hepatic microsomes. The rate at which bilirubin was transferred to rat liver microsomes and glucuronidated was then examined in the presence of various endogenous compounds that promote membrane fusion. For bilirubin substrate in membranes of egg phosphatidylcholine, the addition of Ca2+ (2 mM) increased the microsomal glucuronidation rate, whereas retinol enhanced microsomal conjugation rates for bilirubin in membranes of both lipid compositions. When the transfer of [3H]bilirubin from dual-labelled liposomes to microsomes was enhanced by Ca2+ or retinol, there was no associated increase in [14C]phospholipid transfer. Thus it appears likely that bilirubin is transferred to the endoplasmic reticulum by rapid cytosolic diffusion or membrane-membrane collisions, rather than by membrane fusion; this process may be modulated by changes in the lipid microenvironment of the substrate or the effective intracellular concentrations of Ca2+ or retinol. The observation that polymyxin B induced concomitant membrane-membrane transfer of [3H]bilirubin and [14C]phospholipid suggests that under certain circumstances membrane fusion or aggregation may promote the movement of lipophilic substrates in hepatocytes.

Full text

PDF
41

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahkong Q. F., Fisher D., Tampion W., Lucy J. A. The fusion of erythrocytes by fatty acids, esters, retinol and alpha-tocopherol. Biochem J. 1973 Sep;136(1):147–155. doi: 10.1042/bj1360147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Barenholz Y., Gibbes D., Litman B. J., Goll J., Thompson T. E., Carlson R. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry. 1977 Jun 14;16(12):2806–2810. doi: 10.1021/bi00631a035. [DOI] [PubMed] [Google Scholar]
  4. Blanckaert N., Gollan J., Schmid R. Bilirubin diglucuronide synthesis by a UDP-glucuronic acid-dependent enzyme system in rat liver microsomes. Proc Natl Acad Sci U S A. 1979 Apr;76(4):2037–2041. doi: 10.1073/pnas.76.4.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonnett R., Davies J. E., Hursthouse M. B., Sheldrick G. M. The structure of bilirubin. Proc R Soc Lond B Biol Sci. 1978 Jun 23;202(1147):249–268. doi: 10.1098/rspb.1978.0066. [DOI] [PubMed] [Google Scholar]
  6. Boyer T. D., Zakim D., Vessey D. A. Direct, rapid transfer of estrone from liposomes to microsomes. J Biol Chem. 1980 Jan 25;255(2):627–631. [PubMed] [Google Scholar]
  7. Gad A. E. Cationic polypeptide-induced fusion of acidic liposomes. Biochim Biophys Acta. 1983 Mar 9;728(3):377–382. doi: 10.1016/0005-2736(83)90509-6. [DOI] [PubMed] [Google Scholar]
  8. Haimes H. B., Stockert R. J., Morell A. G., Novikoff A. B. Carbohydrate-specified endocytosis: localization of ligand in the lysosomal compartment. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6936–6939. doi: 10.1073/pnas.78.11.6936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hauser S. C., Ziurys J. C., Gollan J. L. Subcellular distribution and regulation of hepatic bilirubin UDP-glucuronyltransferase. J Biol Chem. 1984 Apr 10;259(7):4527–4533. [PubMed] [Google Scholar]
  10. Jones A. L., Schmucker D. L. Current concepts of liver structure as related to function. Gastroenterology. 1977 Oct;73(4 Pt 1):833–851. [PubMed] [Google Scholar]
  11. Lotan R., Neumann G., Deutsch V. Identification and characterization of specific changes induced by retinoic acid in cell surface glycoconjugates of S91 murine melanoma cells. Cancer Res. 1983 Jan;43(1):303–312. [PubMed] [Google Scholar]
  12. McDonagh A. F., Assisi F. Commercial bilirubin: A trinity of isomers. FEBS Lett. 1971 Nov 1;18(2):315–317. doi: 10.1016/0014-5793(71)80475-1. [DOI] [PubMed] [Google Scholar]
  13. McDonagh A. F., Assisi F. The ready isomerization of bilirubin IX- in aqueous solution. Biochem J. 1972 Sep;129(3):797–800. doi: 10.1042/bj1290797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. OSTROW J. D., HAMMAKER L., SCHMID R. The preparation of crystalline bilirubin-C14. J Clin Invest. 1961 Aug;40:1442–1452. doi: 10.1172/JCI104375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Papahadjopoulos D., Vail W. J., Newton C., Nir S., Jacobson K., Poste G., Lazo R. Studies on membrane fusion. III. The role of calcium-induced phase changes. Biochim Biophys Acta. 1977 Mar 17;465(3):579–598. doi: 10.1016/0005-2736(77)90275-9. [DOI] [PubMed] [Google Scholar]
  16. Pedersen K. O. Binding of calcium to serum albumin. I. Stoichiometry and intrinsic association constant at physiological pH, ionic strength, and temperature. Scand J Clin Lab Invest. 1971 Dec;28(4):459–469. doi: 10.3109/00365517109095724. [DOI] [PubMed] [Google Scholar]
  17. Ross A. C. Retinol esterification by rat liver microsomes. Evidence for a fatty acyl coenzyme A: retinol acyltransferase. J Biol Chem. 1982 Mar 10;257(5):2453–2459. [PubMed] [Google Scholar]
  18. Tipping E., Ketterer B., Christodoulides L. Interactions of small molecules with phospholipid bilayers. Binding to egg phosphatidylcholine of some organic anions (bromosulphophthalein, oestrone sulphate, haem and bilirubin) that bind to ligandin and aminoazo-dye-binding protein A. Biochem J. 1979 May 15;180(2):327–337. doi: 10.1042/bj1800327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vander Jagt D. L., Dean V. L., Wilson S. P., Royer R. E. Regulation of the glutathione S-transferase activity of bilirubin transport protein (ligandin) from human liver. Enzymic memory involving protein-protein interactions. J Biol Chem. 1983 May 10;258(9):5689–5694. [PubMed] [Google Scholar]
  20. Vogler K., Studer R. O. The chemistry of the polymyxin antibiotics. Experientia. 1966 Jun 15;22(6):345–354. doi: 10.1007/BF01901127. [DOI] [PubMed] [Google Scholar]
  21. Whitmer D. I., Russell P. E., Ziurys J. C., Gollan J. L. Hepatic microsomal glucuronidation of bilirubin is modulated by the lipid microenvironment of membrane-bound substrate. J Biol Chem. 1986 Jun 5;261(16):7170–7177. [PubMed] [Google Scholar]
  22. Whitmer D. I., Ziurys J. C., Gollan J. L. Hepatic microsomal glucuronidation of bilirubin in unilamellar liposomal membranes. Implications for intracellular transport of lipophilic substrates. J Biol Chem. 1984 Oct 10;259(19):11969–11975. [PubMed] [Google Scholar]
  23. Zakim D., Vessey D. A. Membrane-bound estrone as substrate for microsomal UDP-glucuronyltransferase. J Biol Chem. 1977 Nov 10;252(21):7534–7537. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES