Abstract
1. A Hepes-based medium has been devised which allows rapid Pi exchange across the plasma membrane of the human erythrocyte. This allows the metabolically labile phosphate pools of human erythrocytes to come to equilibrium with [32P]Pi in the medium after only 5 h in vitro. 2. After 5-7 h incubation with [32P]Pi in this medium, only three phospholipids, phosphatidic acid (PtdOH), phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) are radioactively labelled. The concentrations of PtdIns4P and PtdIns4,5P2 remain constant throughout the incubation, so this labelling process is a reflection of the steady-state turnover of their monoester phosphate groups. 3. During such incubations, the specific radioactivities of the monoesterified phosphates of PtdIns4, PtdIns4,5P2 and PtdOH come to a steady value after 5 h that is only 25-30% of the specific radioactivity of the gamma-phosphate of ATP at that time. We suggest that this is a consequence of metabolic heterogeneity. This heterogeneity is not a result of the heterogeneous age distribution of the erythrocytes in human blood. Thus it appears that there is metabolic compartmentation of these lipids within cells, such that within a time-scale of a few hours only 25-30% of these three lipids are actively metabolized. 4. The phosphoinositidase C of intact human erythrocytes, when activated by Ca2+-ionophore treatment, only hydrolyses 50% of the total PtdIns4,5P2 and 50% of 32P-labelled PtdIns4,5P2 present in the cells: this enzyme does not discriminate between the metabolically active and inactive compartments of lipids in the erythrocyte membrane. Hence at least four metabolic pools of PtdIns4P and PtdIns4,5P2 are distinguishable in the human erythrocyte plasma membrane. 5. The mechanisms by which multiple non-mixing metabolic pools of PtdOH, PtdIns4P and PtdIns4,5P2 are sustained over many hours in the plasma membranes of intact erythrocytes are unknown, although some possible explanations are considered.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan D. Inositol lipids and membrane function in erythrocytes. Cell Calcium. 1982 Oct;3(4-5):451–465. doi: 10.1016/0143-4160(82)90030-6. [DOI] [PubMed] [Google Scholar]
- Allan D., Michell R. H. A calcium-activated polyphosphoinositide phosphodiesterase in the plasma membrane of human and rabbit erythrocytes. Biochim Biophys Acta. 1978 Apr 4;508(2):277–286. doi: 10.1016/0005-2736(78)90330-9. [DOI] [PubMed] [Google Scholar]
- Allan D., Thomas P. Ca2+-induced biochemical changes in human erythrocytes and their relation to microvesiculation. Biochem J. 1981 Sep 15;198(3):433–440. doi: 10.1042/bj1980433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson R. A., Marchesi V. T. Regulation of the association of membrane skeletal protein 4.1 with glycophorin by a polyphosphoinositide. Nature. 1985 Nov 21;318(6043):295–298. doi: 10.1038/318295a0. [DOI] [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BROCKERHOFF H., BALLOU C. E. On the metabolism of the brain phosphoinositide complex. J Biol Chem. 1962 Jun;237:1764–1766. [PubMed] [Google Scholar]
- Baginski E. S., Foà P. P., Zak B. Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem. 1967 Apr;13(4):326–332. [PubMed] [Google Scholar]
- Beutler E., Guinto E., Kuhl W., Matsumoto F. Existence of only a single functional pool of adenosine triphosphate in human erythrocytes. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2825–2828. doi: 10.1073/pnas.75.6.2825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. M., Stewart J. C. The structure of triphosphoinositide from beef brain. Biochim Biophys Acta. 1966 Dec 7;125(3):413–421. doi: 10.1016/0005-2760(66)90029-4. [DOI] [PubMed] [Google Scholar]
- Buckley J. T. Coisolation of glycophorin A and polyphosphoinositides from human erythrocyte membranes. Can J Biochem. 1978 May;56(5):349–351. doi: 10.1139/o78-055. [DOI] [PubMed] [Google Scholar]
- Buckley J. T., Hawthorne J. N. Erythrocyte membrane polyphosphoinositide metabolism and the regulation of calcium binding. J Biol Chem. 1972 Nov 25;247(22):7218–7223. [PubMed] [Google Scholar]
- Burriss Garrett R. J., Redman C. M. Localization of enzymes involved in polyphosphoinositids metabolism on the cytoplasmic surface of the human erythrocyte membrane. Biochim Biophys Acta. 1975 Feb 28;382(1):58–64. doi: 10.1016/0005-2736(75)90372-7. [DOI] [PubMed] [Google Scholar]
- Clarke N. G., Dawson R. M. Alkaline O leads to N-transacylation. A new method for the quantitative deacylation of phospholipids. Biochem J. 1981 Apr 1;195(1):301–306. doi: 10.1042/bj1950301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen N. S., Ekholm J. E., Luthra M. G., Hanahan D. J. Biochemical characterization of density-separated human erythrocytes. Biochim Biophys Acta. 1976 Jan 21;419(2):229–242. doi: 10.1016/0005-2736(76)90349-7. [DOI] [PubMed] [Google Scholar]
- Dale G. L. Quantitation of adenosine-5'-triphosphate used for phosphoinositide metabolism in human erythrocytes. Blood. 1985 Nov;66(5):1133–1137. [PubMed] [Google Scholar]
- Downes C. P., Michell R. H. The polyphosphoinositide phosphodiesterase of erythrocyte membranes. Biochem J. 1981 Jul 15;198(1):133–140. doi: 10.1042/bj1980133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downes P., Michell R. H. Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: lipids in search of a function. Cell Calcium. 1982 Oct;3(4-5):467–502. doi: 10.1016/0143-4160(82)90031-8. [DOI] [PubMed] [Google Scholar]
- Fain J. N., Berridge M. J. Relationship between phosphatidylinositol synthesis and recovery of 5-hydroxytryptamine-responsive Ca2+ flux in blowfly salivary glands. Biochem J. 1979 Jun 15;180(3):655–661. doi: 10.1042/bj1800655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Huestis W. H. Phosphoinositide metabolism and the morphology of human erythrocytes. J Cell Biol. 1984 Jun;98(6):1992–1998. doi: 10.1083/jcb.98.6.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galliard T., Michell R. H., Hawthorne J. N. Incorporation of phosphate into diphosphoinositide by subcellular fractions from liver. Biochim Biophys Acta. 1965 Dec 2;106(3):551–563. doi: 10.1016/0005-2760(65)90071-8. [DOI] [PubMed] [Google Scholar]
- Giraud F., M'Zali H., Chailley B., Mazet F. Changes in morphology and in polyphosphoinositide turnover of human erythrocytes after cholesterol depletion. Biochim Biophys Acta. 1984 Nov 21;778(1):191–200. doi: 10.1016/0005-2736(84)90462-0. [DOI] [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. Diglyceride kinase and other path ways for phosphatidic acid synthesis in the erythrocyte membrane. Biochim Biophys Acta. 1963 Mar 12;67:470–484. doi: 10.1016/0006-3002(63)91852-3. [DOI] [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. Diglyceride kinase and phosphatidic acid phosphatase in erythrocyte membranes. Nature. 1961 Mar 11;189:836–837. doi: 10.1038/189836a0. [DOI] [PubMed] [Google Scholar]
- HOKIN L. E., HOKIN M. R. THE INCORPORATION OF 32P FROM TRIPHOSPHATE INTO POLYPHOSPHOINOSITIDES (GAMMA-32P)ADENOSINE AND PHOSPHATIDIC ACID IN ERYTHROCYTE MEMBRANES. Biochim Biophys Acta. 1964 Oct 2;84:563–575. doi: 10.1016/0926-6542(64)90126-x. [DOI] [PubMed] [Google Scholar]
- Hawkins P. T., Michell R. H., Kirk C. J. A simple assay method for determination of the specific radioactivity of the gamma-phosphate group of 32P-labelled ATP. Biochem J. 1983 Mar 15;210(3):717–720. doi: 10.1042/bj2100717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hawkins P. T., Michell R. H., Kirk C. J. Analysis of the metabolic turnover of the individual phosphate groups of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Validation of novel analytical techniques by using 32P-labelled lipids from erythrocytes. Biochem J. 1984 Mar 15;218(3):785–793. doi: 10.1042/bj2180785. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jolles J., Zwiers H., Dekker A., Wirtz K. W., Gispen W. H. Corticotropin-(1--24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain. Biochem J. 1981 Jan 15;194(1):283–291. doi: 10.1042/bj1940283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koréh K., Monaco M. E. The relationship of hormone-sensitive and hormone-insensitive phosphatidylinositol to phosphatidylinositol 4,5-bisphosphate in the WRK-1 cell. J Biol Chem. 1986 Jan 5;261(1):88–91. [PubMed] [Google Scholar]
- Lassing I., Lindberg U. Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature. 1985 Apr 4;314(6010):472–474. doi: 10.1038/314472a0. [DOI] [PubMed] [Google Scholar]
- M'Zali H., Giraud F. Phosphoinositide reorganization in human erythrocyte membrane upon cholesterol depletion. Biochem J. 1986 Feb 15;234(1):13–20. doi: 10.1042/bj2340013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mack S. E., Palmer F. B. Evidence for a specific phosphatidylinositol 4-phosphate phosphatase in human erythrocyte membranes. J Lipid Res. 1984 Jan;25(1):75–85. [PubMed] [Google Scholar]
- Monaco M. E., Woods D. Characterization of the hormone-sensitive phosphatidylinositol pool in WRK-1 cells. J Biol Chem. 1983 Dec 25;258(24):15125–15129. [PubMed] [Google Scholar]
- Murphy J. R. Influence of temperature and method of centrifugation on the separation of erythrocytes. J Lab Clin Med. 1973 Aug;82(2):334–341. [PubMed] [Google Scholar]
- Müller E., Hegewald H., Jaroszewicz K., Cumme G. A., Hoppe H., Frunder H. Turnover of phosphomonoester groups and compartmentation of polyphosphoinositides in human erythrocytes. Biochem J. 1986 May 1;235(3):775–783. doi: 10.1042/bj2350775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer F. B. Polyphosphoinositide metabolism in aging human erythrocytes. Can J Biochem Cell Biol. 1985 Sep;63(9):927–931. doi: 10.1139/o85-115. [DOI] [PubMed] [Google Scholar]
- Peterson S. C., Kirschner L. B. Di- and triphosphoinositide metabolism in intact swine erythrocytes. Biochim Biophys Acta. 1970 Mar 10;202(2):295–304. doi: 10.1016/0005-2760(70)90191-8. [DOI] [PubMed] [Google Scholar]
- Reich J. G. Analogue computer analysis of tracer flow patterns through the glycolytic and related pathway in erythrocytes and other intact metabolic systems. Eur J Biochem. 1968 Nov;6(3):395–403. doi: 10.1111/j.1432-1033.1968.tb00460.x. [DOI] [PubMed] [Google Scholar]
- Roach P. D., Palmer F. B. Human erythrocyte cytosol phosphatidyl-inositol-bisphosphate phosphatase. Biochim Biophys Acta. 1981 Oct 13;661(2):323–333. doi: 10.1016/0005-2744(81)90021-8. [DOI] [PubMed] [Google Scholar]
- Schneider R. P., Kirscher L. B. Di- and triphosphoinositide metabolism in swine erythrocyte membranes. Biochim Biophys Acta. 1970 Mar 10;202(2):283–294. doi: 10.1016/0005-2760(70)90190-6. [DOI] [PubMed] [Google Scholar]
- Shapiro D. L., Marchesi V. T. Phosphorylation in membranes of intact human erythrocytes. J Biol Chem. 1977 Jan 25;252(2):508–517. [PubMed] [Google Scholar]
- Sharps E. S., McCarl R. L. A high-performance liquid chromatographic method to measure 32P incorporation into phosphorylated metabolites in cultured cells. Anal Biochem. 1982 Aug;124(2):421–424. doi: 10.1016/0003-2697(82)90059-8. [DOI] [PubMed] [Google Scholar]
- Sheetz M. P., Febbroriello P., Koppel D. E. Triphosphoinositide increases glycoprotein lateral mobility in erythrocyte membranes. Nature. 1982 Mar 4;296(5852):91–93. doi: 10.1038/296091a0. [DOI] [PubMed] [Google Scholar]
- Shukla S. D., Coleman R., Finean J. B., Michell R. H. Are polyphosphoinositides associated with glycophorin in human erythrocyte membranes? Biochem J. 1979 May 1;179(2):441–444. doi: 10.1042/bj1790441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shukla S. D., Coleman R., Finean J. B., Michell R. H. The use of phospholipase c to detect structural changes in the membranes of human erythrocytes aged by storage. Biochim Biophys Acta. 1978 Sep 22;512(2):341–349. doi: 10.1016/0005-2736(78)90258-4. [DOI] [PubMed] [Google Scholar]