Skip to main content
Springer logoLink to Springer
. 2024 Oct 15;84(10):1062. doi: 10.1140/epjc/s10052-024-13114-9

Observation of the Λb0J/ψΞ-K+ decay

CMS Collaboration291, A Hayrapetyan 1, A Tumasyan 1,186, W Adam 2, J W Andrejkovic 2, T Bergauer 2, S Chatterjee 2, K Damanakis 2, M Dragicevic 2, A Escalante Del Valle 2, P S Hussain 2, M Jeitler 2,187, N Krammer 2, D Liko 2, I Mikulec 2, J Schieck 2,187, R Schöfbeck 2, D Schwarz 2, M Sonawane 2, S Templ 2, W Waltenberger 2, C-E Wulz 2,187, M R Darwish 3,188, T Janssen 3, P Van Mechelen 3, E S Bols 4, J D’Hondt 4, S Dansana 4, A De Moor 4, M Delcourt 4, H El Faham 4, S Lowette 4, I Makarenko 4, D Müller 4, A R Sahasransu 4, S Tavernier 4, M Tytgat 4,189, S Van Putte 4, D Vannerom 4, B Clerbaux 5, G De Lentdecker 5, L Favart 5, D Hohov 5, J Jaramillo 5, A Khalilzadeh 5, K Lee 5, M Mahdavikhorrami 5, A Malara 5, S Paredes 5, L Pétré 5, N Postiau 5, L Thomas 5, M Vanden Bemden 5, C Vander Velde 5, P Vanlaer 5, M De Coen 6, D Dobur 6, Y Hong 6, J Knolle 6, L Lambrecht 6, G Mestdach 6, C Rendón 6, A Samalan 6, K Skovpen 6, N Van Den Bossche 6, L Wezenbeek 6, A Benecke 7, G Bruno 7, C Caputo 7, C Delaere 7, I S Donertas 7, A Giammanco 7, K Jaffel 7, Sa Jain 7, V Lemaitre 7, J Lidrych 7, P Mastrapasqua 7, K Mondal 7, T T Tran 7, S Wertz 7, G A Alves 8, E Coelho 8, C Hensel 8, T Menezes De Oliveira 8, A Moraes 8, P Rebello Teles 8, M Soeiro 8, W L Aldá Júnior 9, M Alves Gallo Pereira 9, M Barroso Ferreira Filho 9, H Brandao Malbouisson 9, W Carvalho 9, J Chinellato 9,190, E M Da Costa 9, G G Da Silveira 9,191, D De Jesus Damiao 9, S Fonseca De Souza 9, J Martins 9,192, C Mora Herrera 9, K Mota Amarilo 9, L Mundim 9, H Nogima 9, A Santoro 9, A Sznajder 9, M Thiel 9, A Vilela Pereira 9, C A Bernardes 10,191, L Calligaris 10, T R Fernandez Perez Tomei 10, E M Gregores 10, P G Mercadante 10, S F Novaes 10, B Orzari 10, Sandra S Padula 10, A Aleksandrov 11, G Antchev 11, R Hadjiiska 11, P Iaydjiev 11, M Misheva 11, M Shopova 11, G Sultanov 11, A Dimitrov 12, T Ivanov 12, L Litov 12, B Pavlov 12, P Petkov 12, A Petrov 12, E Shumka 12, S Keshri 13, S Thakur 13, T Cheng 14, Q Guo 14, T Javaid 14, M Mittal 14, L Yuan 14, G Bauer 15,193,194, Z Hu 15, J Liu 15, K Yi 15,193,195, G M Chen 16,196, H S Chen 16,196, M Chen 16,196, F Iemmi 16, C H Jiang 16, A Kapoor 16,197, H Liao 16, Z-A Liu 16,198, F Monti 16, M A Shahzad 16,196, R Sharma 16,199, J N Song 16,198, J Tao 16, C Wang 16,196, J Wang 16, Z Wang 16,196, H Zhang 16, A Agapitos 17, Y Ban 17, A Levin 17, C Li 17, Q Li 17, Y Mao 17, S J Qian 17, X Sun 17, D Wang 17, H Yang 17, L Zhang 17, C Zhou 17, Z You 18, N Lu 19, X Gao 20,200, D Leggat 20, H Okawa 20, Y Zhang 20, Z Lin 21, C Lu 21, M Xiao 21, C Avila 22, D A Barbosa Trujillo 22, A Cabrera 22, C Florez 22, J Fraga 22, J A Reyes Vega 22, J Mejia Guisao 23, F Ramirez 23, M Rodriguez 23, J D Ruiz Alvarez 23, D Giljanovic 24, N Godinovic 24, D Lelas 24, A Sculac 24, M Kovac 25, T Sculac 25, P Bargassa 26, V Brigljevic 26, B K Chitroda 26, D Ferencek 26, S Mishra 26, A Starodumov 26,201, T Susa 26, A Attikis 27, K Christoforou 27, S Konstantinou 27, J Mousa 27, C Nicolaou 27, F Ptochos 27, P A Razis 27, H Rykaczewski 27, H Saka 27, A Stepennov 27, M Finger 28, M Finger Jr 28, A Kveton 28, E Ayala 29, E Carrera Jarrin 30, H Abdalla 31,202, Y Assran 31,203,204, M Abdullah Al-Mashad 32, M A Mahmoud 32, R K Dewanjee 33,205, K Ehataht 33, M Kadastik 33, T Lange 33, S Nandan 33, C Nielsen 33, J Pata 33, M Raidal 33, L Tani 33, C Veelken 33, H Kirschenmann 34, K Osterberg 34, M Voutilainen 34, S Bharthuar 35, E Brücken 35, F Garcia 35, J Havukainen 35, K T S Kallonen 35, M S Kim 35, R Kinnunen 35, T Lampén 35, K Lassila-Perini 35, S Lehti 35, T Lindén 35, M Lotti 35, L Martikainen 35, M Myllymäki 35, M M Rantanen 35, H Siikonen 35, E Tuominen 35, J Tuominiemi 35, P Luukka 36, H Petrow 36, T Tuuva 36, M Besancon 37, F Couderc 37, M Dejardin 37, D Denegri 37, J L Faure 37, F Ferri 37, S Ganjour 37, P Gras 37, G Hamel de Monchenault 37, V Lohezic 37, J Malcles 37, J Rander 37, A Rosowsky 37, M Ö Sahin 37, A Savoy-Navarro 37,206, P Simkina 37, M Titov 37, M Tornago 37, C Baldenegro Barrera 38, F Beaudette 38, A Buchot Perraguin 38, P Busson 38, A Cappati 38, C Charlot 38, F Damas 38, O Davignon 38, A De Wit 38, G Falmagne 38, B A Fontana Santos Alves 38, S Ghosh 38, A Gilbert 38, R Granier de Cassagnac 38, A Hakimi 38, B Harikrishnan 38, L Kalipoliti 38, G Liu 38, J Motta 38, M Nguyen 38, C Ochando 38, L Portales 38, R Salerno 38, U Sarkar 38, J B Sauvan 38, Y Sirois 38, A Tarabini 38, E Vernazza 38, A Zabi 38, A Zghiche 38, J-L Agram 39,207, J Andrea 39, D Apparu 39, D Bloch 39, J-M Brom 39, E C Chabert 39, C Collard 39, S Falke 39, U Goerlach 39, C Grimault 39, R Haeberle 39, A-C Le Bihan 39, M A Sessini 39, P Van Hove 39, S Beauceron 40, B Blancon 40, G Boudoul 40, N Chanon 40, J Choi 40, D Contardo 40, P Depasse 40, C Dozen 40,208, H El Mamouni 40, J Fay 40, S Gascon 40, M Gouzevitch 40, C Greenberg 40, G Grenier 40, B Ille 40, I B Laktineh 40, M Lethuillier 40, L Mirabito 40, S Perries 40, A Purohit 40, M Vander Donckt 40, P Verdier 40, J Xiao 40, G Adamov 41, I Lomidze 41, Z Tsamalaidze 41,201, V Botta 42, L Feld 42, K Klein 42, M Lipinski 42, D Meuser 42, A Pauls 42, N Röwert 42, M Teroerde 42, S Diekmann 43, A Dodonova 43, N Eich 43, D Eliseev 43, F Engelke 43, M Erdmann 43, P Fackeldey 43, B Fischer 43, T Hebbeker 43, K Hoepfner 43, F Ivone 43, A Jung 43, M Y Lee 43, L Mastrolorenzo 43, M Merschmeyer 43, A Meyer 43, S Mukherjee 43, D Noll 43, A Novak 43, F Nowotny 43, A Pozdnyakov 43, Y Rath 43, W Redjeb 43, F Rehm 43, H Reithler 43, V Sarkisovi 43, A Schmidt 43, A Sharma 43, A Stein 43, F Torres Da Silva De Araujo 43,209, L Vigilante 43, S Wiedenbeck 43, S Zaleski 43, C Dziwok 44, G Flügge 44, W Haj Ahmad 44,210, T Kress 44, A Nowack 44, O Pooth 44, A Stahl 44, T Ziemons 44, A Zotz 44, H Aarup Petersen 45, M Aldaya Martin 45, J Alimena 45, S Amoroso 45, Y An 45, S Baxter 45, M Bayatmakou 45, H Becerril Gonzalez 45, O Behnke 45, A Belvedere 45, S Bhattacharya 45, F Blekman 45,211, K Borras 45,212, D Brunner 45, A Campbell 45, A Cardini 45, C Cheng 45, F Colombina 45, S Consuegra Rodríguez 45, G Correia Silva 45, M De Silva 45, G Eckerlin 45, D Eckstein 45, L I Estevez Banos 45, O Filatov 45, E Gallo 45,211, A Geiser 45, A Giraldi 45, G Greau 45, V Guglielmi 45, M Guthoff 45, A Hinzmann 45, A Jafari 45,213, L Jeppe 45, N Z Jomhari 45, B Kaech 45, M Kasemann 45, H Kaveh 45, C Kleinwort 45, R Kogler 45, M Komm 45, D Krücker 45, W Lange 45, D Leyva Pernia 45, K Lipka 45,214, W Lohmann 45,215, R Mankel 45, I-A Melzer-Pellmann 45, M Mendizabal Morentin 45, J Metwally 45, A B Meyer 45, G Milella 45, A Mussgiller 45, A Nürnberg 45, Y Otarid 45, D Pérez Adán 45, E Ranken 45, A Raspereza 45, B Ribeiro Lopes 45, J Rübenach 45, A Saggio 45, M Scham 45,212,216, S Schnake 45,212, P Schütze 45, C Schwanenberger 45,211, D Selivanova 45, M Shchedrolosiev 45, R E Sosa Ricardo 45, L P Sreelatha Pramod 45, D Stafford 45, F Vazzoler 45, A Ventura Barroso 45, R Walsh 45, Q Wang 45, Y Wen 45, K Wichmann 45, L Wiens 45,212, C Wissing 45, S Wuchterl 45, Y Yang 45, A Zimermmane Castro Santos 45, A Albrecht 46, S Albrecht 46, M Antonello 46, S Bein 46, L Benato 46, M Bonanomi 46, P Connor 46, M Eich 46, K El Morabit 46, Y Fischer 46, A Fröhlich 46, C Garbers 46, E Garutti 46, A Grohsjean 46, M Hajheidari 46, J Haller 46, H R Jabusch 46, G Kasieczka 46, P Keicher 46, R Klanner 46, W Korcari 46, T Kramer 46, V Kutzner 46, F Labe 46, J Lange 46, A Lobanov 46, C Matthies 46, A Mehta 46, L Moureaux 46, M Mrowietz 46, A Nigamova 46, Y Nissan 46, A Paasch 46, K J Pena Rodriguez 46, T Quadfasel 46, B Raciti 46, M Rieger 46, D Savoiu 46, J Schindler 46, P Schleper 46, M Schröder 46, J Schwandt 46, M Sommerhalder 46, H Stadie 46, G Steinbrück 46, A Tews 46, M Wolf 46, S Brommer 47, M Burkart 47, E Butz 47, T Chwalek 47, A Dierlamm 47, A Droll 47, N Faltermann 47, M Giffels 47, A Gottmann 47, F Hartmann 47,217, R Hofsaess 47, M Horzela 47, U Husemann 47, M Klute 47, R Koppenhöfer 47, M Link 47, A Lintuluoto 47, S Maier 47, S Mitra 47, M Mormile 47, Th Müller 47, M Neukum 47, M Oh 47, G Quast 47, K Rabbertz 47, B Regnery 47, N Shadskiy 47, I Shvetsov 47, H J Simonis 47, N Trevisani 47, R Ulrich 47, J van der Linden 47, R F Von Cube 47, M Wassmer 47, S Wieland 47, F Wittig 47, R Wolf 47, S Wunsch 47, X Zuo 47, G Anagnostou 48, P Assiouras 48, G Daskalakis 48, A Kyriakis 48, A Papadopoulos 48,217, A Stakia 48, P Kontaxakis 49, G Melachroinos 49, A Panagiotou 49, I Papavergou 49, I Paraskevas 49, N Saoulidou 49, K Theofilatos 49, E Tziaferi 49, K Vellidis 49, I Zisopoulos 49, G Bakas 50, T Chatzistavrou 50, G Karapostoli 50, K Kousouris 50, I Papakrivopoulos 50, E Siamarkou 50, G Tsipolitis 50, A Zacharopoulou 50, K Adamidis 51, I Bestintzanos 51, I Evangelou 51, C Foudas 51, P Gianneios 51, C Kamtsikis 51, P Katsoulis 51, P Kokkas 51, P G Kosmoglou Kioseoglou 51, N Manthos 51, I Papadopoulos 51, J Strologas 51, M Bartók 52,218, C Hajdu 52, D Horvath 52,219,220, F Sikler 52, V Veszpremi 52, M Csanád 53, K Farkas 53, M M A Gadallah 53,221, Á Kadlecsik 53, P Major 53, K Mandal 53, G Pásztor 53, A J Rádl 53,222, G I Veres 53, P Raics 54, B Ujvari 54,223, G Zilizi 54, G Bencze 55, S Czellar 55, J Karancsi 55,218, J Molnar 55, Z Szillasi 55, T Csorgo 56,222, F Nemes 56,222, T Novak 56, J Babbar 57, S Bansal 57, S B Beri 57, V Bhatnagar 57, G Chaudhary 57, S Chauhan 57, N Dhingra 57,224, A Kaur 57, A Kaur 57, H Kaur 57, M Kaur 57, S Kumar 57, M Meena 57, K Sandeep 57, T Sheokand 57, J B Singh 57, A Singla 57, A Ahmed 58, A Bhardwaj 58, A Chhetri 58, B C Choudhary 58, A Kumar 58, M Naimuddin 58, K Ranjan 58, S Saumya 58, S Acharya 59,225, S Baradia 59, S Barman 59,226, S Bhattacharya 59, D Bhowmik 59, S Dutta 59, S Dutta 59, B Gomber 59,225, P Palit 59, G Saha 59, B Sahu 59,225, S Sarkar 59, M M Ameen 60, P K Behera 60, S C Behera 60, S Chatterjee 60, P Jana 60, P Kalbhor 60, J R Komaragiri 60,227, D Kumar 60,227, L Panwar 60,227, R Pradhan 60, P R Pujahari 60, N R Saha 60, A Sharma 60, A K Sikdar 60, S Verma 60, T Aziz 61, I Das 61, S Dugad 61, M Kumar 61, G B Mohanty 61, P Suryadevara 61, A Bala 62, S Banerjee 62, R M Chatterjee 62, M Guchait 62, Sh Jain 62, S Karmakar 62, S Kumar 62, G Majumder 62, K Mazumdar 62, S Mukherjee 62, S Parolia 62, A Thachayath 62, S Bahinipati 63,228, A K Das 63, C Kar 63, D Maity 63,229, P Mal 63, T Mishra 63, V K Muraleedharan Nair Bindhu 63,229, K Naskar 63,229, A Nayak 63,229, P Sadangi 63, P Saha 63, S K Swain 63, S Varghese 63,229, D Vats 63,229, A Alpana 64, S Dube 64, B Kansal 64, A Laha 64, A Rastogi 64, S Sharma 64, H Bakhshiansohi 65,230, E Khazaie 65,231, M Zeinali 65,232, S Chenarani 66,233, S M Etesami 66, M Khakzad 66, M Mohammadi Najafabadi 66, M Grunewald 67, M Abbrescia 68, R Aly 68,234, A Colaleo 68, D Creanza 68, B D’Anzi 68, N De Filippis 68, M De Palma 68, A Di Florio 68, W Elmetenawee 68,234, L Fiore 68, G Iaselli 68, G Maggi 68, M Maggi 68, I Margjeka 68, V Mastrapasqua 68, S My 68, S Nuzzo 68, A Pellecchia 68, A Pompili 68, G Pugliese 68, R Radogna 68, G Ramirez-Sanchez 68, D Ramos 68, A Ranieri 68, L Silvestris 68, F M Simone 68, Ü Sözbilir 68, A Stamerra 68, R Venditti 68, P Verwilligen 68, A Zaza 68, G Abbiendi 69, C Battilana 69, D Bonacorsi 69, L Borgonovi 69, R Campanini 69, P Capiluppi 69, F R Cavallo 69, M Cuffiani 69, G M Dallavalle 69, T Diotalevi 69, F Fabbri 69, A Fanfani 69, D Fasanella 69, P Giacomelli 69, L Giommi 69, C Grandi 69, L Guiducci 69, S Lo Meo 69,235, L Lunerti 69, S Marcellini 69, G Masetti 69, F L Navarria 69, A Perrotta 69, F Primavera 69, A M Rossi 69, T Rovelli 69, G P Siroli 69, S Costa 70,236, A Di Mattia 70, R Potenza 70, A Tricomi 70,236, C Tuve 70, G Barbagli 71, G Bardelli 71, B Camaiani 71, A Cassese 71, R Ceccarelli 71, V Ciulli 71, C Civinini 71, R D’Alessandro 71, E Focardi 71, T Kello 71, G Latino 71, P Lenzi 71, M Lizzo 71, M Meschini 71, S Paoletti 71, A Papanastassiou 71, G Sguazzoni 71, L Viliani 71, L Benussi 72, S Bianco 72, S Meola 72,237, D Piccolo 72, P Chatagnon 73, F Ferro 73, E Robutti 73, S Tosi 73, A Benaglia 74, G Boldrini 74, F Brivio 74, F Cetorelli 74, F De Guio 74, M E Dinardo 74, P Dini 74, S Gennai 74, R Gerosa 74, A Ghezzi 74, P Govoni 74, L Guzzi 74, M T Lucchini 74, M Malberti 74, S Malvezzi 74, A Massironi 74, D Menasce 74, L Moroni 74, M Paganoni 74, D Pedrini 74, B S Pinolini 74, S Ragazzi 74, T Tabarelli de Fatis 74, D Zuolo 74, S Buontempo 75, A Cagnotta 75, F Carnevali 75, N Cavallo 75, A De Iorio 75, F Fabozzi 75, A O M Iorio 75, L Lista 75,238, P Paolucci 75,217, B Rossi 75, C Sciacca 75, R Ardino 76, P Azzi 76, N Bacchetta 76,239, D Bisello 76, P Bortignon 76, A Bragagnolo 76, R Carlin 76, T Dorigo 76, F Gasparinis 76, U Gasparini 76, A Gozzelino 76, G Grosso 76, L Layer 76,240, E Lusiani 76, M Margoni 76, A T Meneguzzo 76, M Migliorini 76, J Pazzini 76, P Ronchese 76, R Rossin 76, F Simonetto 76, G Strong 76, M Tosi 76, A Triossi 76, S Ventura 76, H Yarar 76, M Zanetti 76, P Zotto 76, A Zucchetta 76, G Zumerle 76, S Abu Zeid 77,241, C Aimè 77, A Braghieri 77, S Calzaferri 77, D Fiorina 77, P Montagna 77, V Re 77, C Riccardi 77, P Salvini 77, I Vai 77, P Vitulo 77, S Ajmal 78, P Asenov 78,242, G M Bilei 78, D Ciangottini 78, L Fanò 78, M Magherini 78, G Mantovani 78, V Mariani 78, M Menichelli 78, F Moscatelli 78,242, A Piccinelli 78, M Presilla 78, A Rossi 78, A Santocchia 78, D Spiga 78, T Tedeschi 78, P Azzurri 79, G Bagliesi 79, R Bhattacharya 79, L Bianchini 79, T Boccali 79, E Bossini 79, D Bruschini 79, R Castaldi 79, M A Ciocci 79, M Cipriani 79, V D’Amantes 79, R Dell’Orso 79, S Donato 79, A Giassi 79, F Ligabue 79, D Matos Figueiredo 79, A Messineo 79, M Musich 79, F Palla 79, A Rizzi 79, G Rolandi 79, S Roy Chowdhury 79, T Sarkar 79, A Scribano 79, P Spagnolo 79, R Tenchini 79, G Tonelli 79, N Turini 79, A Venturi 79, P G Verdini 79, P Barria 80, M Campana 80, F Cavallari 80, L Cunqueiro Mendez 80, D Del Re 80, E Di Marco 80, M Diemoz 80, F Errico 80, E Longo 80, P Meridiani 80, J Mijuskovic 80, G Organtini 80, F Pandolfi 80, R Paramatti 80, C Quaranta 80, S Rahatlou 80, C Rovelli 80, F Santanastasio 80, L Soffi 80, N Amapane 81, R Arcidiaconos 81, S Argiro 81, M Arneodo 81, N Bartosik 81, R Bellan 81, A Bellora 81, C Biino 81, N Cartiglia 81, M Costa 81, R Covarelli 81, N Demaria 81, L Finco 81, M Grippo 81, B Kiani 81, F Legger 81, F Luongo 81, C Mariotti 81, S Maselli 81, A Mecca 81, E Migliore 81, M Monteno 81, R Mulargia 81, M M Obertino 81, G Ortona 81, L Pacher 81, N Pastrone 81, M Pelliccioni 81, M Ruspa 81, F Siviero 81, V Sola 81, A Solano 81, D Soldi 81, A Staiano 81, C Tarricone 81, D Trocino 81, G Umoret 81, E Vlasov 81, S Belforte 82, V Candelise 82, M Casarsa 82, F Cossutti 82, K De Leo 82, G Della Ricca 82, S Dogra 83, J Hong 83, C Huh 83, B Kim 83, D H Kim 83, J Kim 83, H Lee 83, S W Lee 83, C S Moon 83, Y D Oh 83, M S Ryu 83, S Sekmen 83, Y C Yang 83, G Bak 84, P Gwak 84, H Kim 84, D H Moon 84, E Asilar 85, D Kim 85, T J Kim 85, J A Merlin 85, J Park 85, S Choi 86, S Han 86, B Hong 86, K Lee 86, K S Lee 86, S Lee 86, J Park 86, S K Park 86, J Yoo 86, J Goh 87, H S Kim 88, Y Kim 88, S Lee 88, J Almond 89, J H Bhyun 89, J Choi 89, W Jun 89, J Kim 89, J S Kim 89, S Ko 89, H Kwon 89, H Lee 89, J Lee 89, J Lee 89, B H Oh 89, S B Oh 89, H Seo 89, U K Yang 89, I Yoon 89, W Jang 90, D Y Kang 90, Y Kang 90, S Kim 90, B Ko 90, J S H Lee 90, Y Lee 90, I C Park 90, Y Roh 90, I J Watson 90, S Yang 90, S Ha 91, H D Yoo 91, M Choi 92, M R Kim 92, H Lee 92, Y Lee 92, I Yu 92, T Beyrouthy 93, Y Maghrbi 93, K Dreimanis 94, A Gaile 94, G Pikurs 94, A Potrebko 94, M Seidel 94, V Veckalns 94,243, N R Strautnieks 95, M Ambrozas 96, A Juodagalvis 96, A Rinkevicius 96, G Tamulaitis 96, N Bin Norjoharuddeen 97, I Yusuff 97,244, Z Zolkapli 97, J F Benitez 98, A Castaneda Hernandez 98, H A Encinas Acosta 98, L G Gallegos Maríñez 98, M León Coello 98, J A Murillo Quijada 98, A Sehrawat 98, L Valencia Palomo 98, G Ayala 99, H Castilla-Valdez 99, E De La Cruz-Burelo 99, I Heredia-De La Cruz 99,245, R Lopez-Fernandez 99, C A Mondragon Herrera 99, A Sánchez Hernández 99, C Oropeza Barrera 100, M Ramírez García 100, I Bautista 101, I Pedraza 101, H A Salazar Ibarguen 101, C Uribe Estrada 101, I Bubanja 102, N Raicevic 102, P H Butler 103, A Ahmad 104, M I Asghar 104, A Awais 104, M I M Awan 104, H R Hoorani 104, W A Khan 104, V Avati 105, L Grzanka 105, M Malawski 105, H Bialkowska 106, M Bluj 106, B Boimska 106, M Górski 106, M Kazana 106, M Szleper 106, P Zalewski 106, K Bunkowski 107, K Doroba 107, A Kalinowski 107, M Konecki 107, J Krolikowski 107, A Muhammad 107, K Pozniak 108, W Zabolotny 108, M Araujo 109, D Bastos 109, C Beirão Da Cruz E Silva 109, A Boletti 109, M Bozzo 109, P Faccioli 109, M Gallinaro 109, J Hollar 109, N Leonardo 109, T Niknejad 109, A Petrilli 109, M Pisano 109, J Seixas 109, J Varela 109, J W Wulff 109, P Adzic 110, P Milenovic 110, M Dordevic 111, J Milosevic 111, V Rekovic 111, M Aguilar-Benitez 112, J Alcaraz Maestre 112, Cristina F Bedoya 112, M Cepeda 112, M Cerrada 112, N Colino 112, B De La Cruz 112, A Delgado Peris 112, D Fernández Del Val 112, J P Fernández Ramos 112, J Flix 112, M C Fouz 112, O Gonzalez Lopez 112, S Goy Lopez 112, J M Hernandez 112, M I Josa 112, J León Holgado 112, D Moran 112, C M Morcillo Perez 112, Á Navarro Tobar 112, C Perez Dengra 112, A Pérez-Calero Yzquierdo 112, J Puerta Pelayo 112, I Redondo 112, D D Redondo Ferrero 112, L Romero 112, S Sánchez Navas 112, L Urda Gómez 112, J Vazquez Escobar 112, C Willmott 112, J F de Trocóniz 113, B Alvarez Gonzalez 114, J Cuevas 114, J Fernandez Menendez 114, S Folgueras 114, I Gonzalez Caballero 114, J R González Fernández 114, E Palencia Cortezon 114, C Ramón Álvarez 114, V Rodríguez Bouza 114, A Soto Rodríguez 114, A Trapote 114, C Vico Villalba 114, P Vischia 114, S Bhowmik 115, S Blanco Fernández 115, J A Brochero Cifuentes 115, I J Cabrillo 115, A Calderon 115, J Duarte Campderros 115, M Fernandez 115, C Fernandez Madrazo 115, G Gomez 115, C Lasaosa García 115, C Martinez Rivero 115, P Martinez Ruiz del Arbol 115, F Matorras 115, P Matorras Cuevas 115, E Navarrete Ramos 115, J Piedra Gomez 115, L Scodellaro 115, I Vila 115, J M Vizan Garcia 115, M K Jayananda 116, B Kailasapathy 116,246, D U J Sonnadara 116, D D C Wickramarathna 116, W G D Dharmaratna 117,247, K Liyanage 117, N Perera 117, N Wickramage 117, D Abbaneo 118, C Amendola 118, E Auffray 118, G Auzinger 118, J Baechler 118, D Barney 118, A Bermúdez Martínez 118, M Bianco 118, B Bilin 118, A A Bin Anuar 118, A Bocci 118, E Brondolin 118, C Caillol 118, T Camporesi 118, G Cerminara 118, N Chernyavskaya 118, D d’Enterria 118, A Dabrowski 118, A David 118, A De Roeck 118, M M Defranchis 118, M Deile 118, M Dobson 118, F Fallavollita 118,248, L Forthomme 118, G Franzoni 118, W Funk 118, S Giani 118, D Gigi 118, K Gill 118, F Glege 118, L Gouskos 118, M Haranko 118, J Hegeman 118, B Huber 118, V Innocente 118, T James 118, P Janot 118, J Kieseler 118, S Laurila 118, P Lecoq 118, E Leutgeb 118, C Lourenço 118, B Maier 118, L Malgeri 118, M Mannelli 118, A C Marini 118, M Matthewman 118, F Meijers 118, S Mersi 118, E Meschi 118, V Milosevic 118, F Moortgat 118, M Mulders 118, S Orfanelli 118, F Pantaleo 118, G Petrucciani 118, A Pfeiffer 118, M Pierini 118, D Piparo 118, H Qu 118, D Rabady 118, G Reales Gutiérrez 118, M Rovere 118, H Sakulin 118, S Scarfi 118, C Schwick 118, M Selvaggi 118, A Sharma 118, K Shchelina 118, P Silva 118, P Sphicas 118,249, A G Stahl Leiton 118, A Steen 118, S Summers 118, D Treille 118, P Tropea 118, A Tsirou 118, D Walter 118, J Wanczyk 118,250, K A Wozniak 118,251, P Zehetner 118, P Zejdl 118, W D Zeuner 118, T Bevilacqua 119,252, L Caminada 119,252, A Ebrahimi 119, W Erdmann 119, R Horisberger 119, Q Ingram 119, H C Kaestli 119, D Kotlinski 119, C Lange 119, M Missiroli 119,252, L Noehte 119,252, T Rohe 119, T K Aarrestad 120, K Androsov 120,250, M Backhaus 120, A Calandri 120, C Cazzaniga 120, K Datta 120, A De Cosa 120, G Dissertori 120, M Dittmar 120, M Donegà 120, F Eble 120, M Galli 120, K Gedia 120, F Glessgen 120, C Grab 120, D Hits 120, W Lustermann 120, A-M Lyon 120, R A Manzoni 120, M Marchegiani 120, L Marchese 120, C Martin Perez 120, A Mascellani 120,250, F Nessi-Tedaldi 120, F Pauss 120, V Perovic 120, S Pigazzini 120, M G Ratti 120, M Reichmann 120, C Reissel 120, T Reitenspiess 120, B Ristic 120, F Riti 120, D Ruini 120, D A Sanz Becerra 120, R Seidita 120, J Steggemann 120,250, D Valsecchi 120, R Wallny 120, C Amsler 121,253, P Bärtschi 121, C Botta 121, D Brzhechko 121, M F Canelli 121, K Cormier 121, R Del Burgo 121, J K Heikkilä 121, M Huwiler 121, W Jin 121, A Jofrehei 121, B Kilminster 121, S Leontsinis 121, S P Liechti 121, A Macchiolo 121, P Meiring 121, V M Mikuni 121, U Molinatti 121, I Neutelings 121, A Reimers 121, P Robmann 121, S Sanchez Cruz 121, K Schweiger 121, M Senger 121, Y Takahashi 121, R Tramontano 121, C Adloff 122,254, C M Kuo 122, W Lin 122, P K Rout 122, P C Tiwari 122,227, S S Yu 122, L Ceard 123, Y Chao 123, K F Chen 123, P s Chen 123, Z g Chen 123, W-S Hou 123, T h Hsu 123, Y w Kao 123, R Khurana 123, G Kole 123, Y Y Li 123, R-S Lu 123, E Paganis 123, A Psallidas 123, X f Su 123, J Thomas-Wilsker 123, L s Tsai 123, H y Wu 123, E Yazgan 123, C Asawatangtrakuldee 124, N Srimanobhas 124, V Wachirapusitanand 124, D Agyel 125, F Boran 125, Z S Demiroglu 125, F Dolek 125, I Dumanoglu 125,255, E Eskut 125, Y Guler 125,256, E Gurpinar Guler 125,256, C Isik 125, O Kara 125, A Kayis Topaksu 125, U Kiminsu 125, G Onengut 125, K Ozdemir 125,257, A Polatoz 125, B Tali 125,258, U G Tok 125, S Turkcapar 125, E Uslan 125, I S Zorbakir 125, M Yalvac 126,259, B Akgun 127, I O Atakisi 127, E Gülmez 127, M Kaya 127,260, O Kaya 127,261, S Tekten 127,262, A Cakir 128, K Cankocak 128,255,263, Y Komurcu 128, S Sen 128,264, O Aydilek 129, S Cerci 129,258, V Epshteyn 129, B Hacisahinoglu 129, I Hos 129,265, B Isildak 129,266, B Kaynak 129, S Ozkorucuklu 129, O Potok 129, H Sert 129, C Simsek 129, D Sunar Cerci 129,258, C Zorbilmez 129, A Boyaryntsev 130, B Grynyov 130, L Levchuk 131, D Anthony 132, J J Brooke 132, A Bundock 132, F Bury 132, E Clement 132, D Cussans 132, H Flacher 132, M Glowacki 132, J Goldstein 132, H F Heath 132, L Kreczko 132, B Krikler 132, S Paramesvaran 132, S Seif El Nasr-Storey 132, V J Smith 132, N Stylianou 132,267, K Walkingshaw Pass 132, R White 132, A H Ball 133, K W Bell 133, A Belyaev 133,268, C Brew 133, R M Brown 133, D J A Cockerill 133, C Cooke 133, K V Ellis 133, K Harder 133, S Harper 133, M-L Holmberg 133,269, J Linacre 133, K Manolopoulos 133, D M Newbold 133, E Olaiya 133, D Petyt 133, T Reis 133, G Salvi 133, T Schuh 133, C H Shepherd-Themistocleous 133, I R Tomalin 133, T Williams 133, R Bainbridge 134, P Bloch 134, C E Brown 134, O Buchmuller 134, V Cacchio 134, C A Carrillo Montoya 134, G S Chahal 134,270, D Colling 134, J S Dancu 134, P Dauncey 134, G Davies 134, J Davies 134, M Della Negra 134, S Fayer 134, G Fedi 134, G Hall 134, M H Hassanshahi 134, A Howard 134, G Iles 134, M Knight 134, J Langford 134, L Lyons 134, A-M Magnan 134, S Malik 134, A Martelli 134, M Mieskolainen 134, J Nash 134,271, M Pesaresi 134, B C Radburn-Smith 134, A Richards 134, A Rose 134, C Seez 134, R Shukla 134, A Tapper 134, K Uchida 134, G P Uttley 134, L H Vage 134, T Virdee 134,217, M Vojinovic 134, N Wardle 134, D Winterbottom 134, K Coldham 135, J E Cole 135, A Khan 135, P Kyberd 135, I D Reid 135, S Abdullin 136, A Brinkerhoff 136, B Caraway 136, J Dittmann 136, K Hatakeyama 136, J Hiltbrand 136, A R Kanuganti 136, B McMaster 136, M Saunders 136, S Sawant 136, C Sutantawibul 136, M Toms 136,272, J Wilson 136, R Bartek 137, A Dominguez 137, C Huerta Escamilla 137, A E Simsek 137, R Uniyal 137, A M Vargas Hernandez 137, R Chudasama 138, S I Cooper 138, S V Gleyzer 138, C U Perez 138, P Rumerio 138,273, E Usai 138, C West 138, R Yi 138, A Akpinar 139, A Albert 139, D Arcaro 139, C Cosby 139, Z Demiragli 139, C Erice 139, E Fontanesi 139, D Gastler 139, S Jeon 139, J Rohlf 139, K Salyer 139, D Sperka 139, D Spitzbart 139, I Suarez 139, A Tsatsos 139, S Yuan 139, G Benelli 140, X Coubez 140,212, D Cutts 140, M Hadley 140, U Heintz 140, J M Hogan 140,274, T Kwon 140, G Landsberg 140, K T Lau 140, D Li 140, J Luo 140, S Mondal 140, M Narain 140, N Pervan 140, S Sagir 140,275, F Simpson 140, M Stamenkovic 140, W Y Wong 140, X Yan 140, W Zhang 140, S Abbott 141, J Bonilla 141, C Brainerd 141, R Breedon 141, M Calderon De La Barca Sanchez 141, M Chertok 141, M Citron 141, J Conway 141, P T Cox 141, R Erbacher 141, F Jensen 141, O Kukral 141, G Mocellin 141, M Mulhearn 141, D Pellett 141, W Wei 141, Y Yao 141, F Zhang 141, M Bachtis 142, R Cousins 142, A Datta 142, J Hauser 142, M Ignatenko 142, M A Iqbal 142, T Lam 142, E Manca 142, D Saltzberg 142, V Valuev 142, R Clare 143, M Gordon 143, G Hanson 143, W Si 143, S Wimpenny 143, J G Branson 144, S Cittolin 144, S Cooperstein 144, D Diaz 144, J Duarte 144, L Giannini 144, J Guiang 144, R Kansal 144, V Krutelyov 144, R Lee 144, J Letts 144, M Masciovecchio 144, F Mokhtar 144, M Pieri 144, M Quinnan 144, B V Sathia Narayanan 144, V Sharma 144, M Tadel 144, E Vourliotis 144, F Würthwein 144, Y Xiang 144, A Yagil 144, A Barzdukas 145, L Brennan 145, C Campagnari 145, G Collura 145, A Dorsett 145, J Incandela 145, M Kilpatrick 145, J Kim 145, A J Li 145, P Masterson 145, H Mei 145, M Oshiro 145, J Richman 145, U Sarica 145, R Schmitz 145, F Setti 145, J Sheplock 145, D Stuart 145, S Wang 145, A Bornheim 146, O Cerri 146, A Latorre 146, J M Lawhorn 146, J Mao 146, H B Newman 146, T Q Nguyen 146, M Spiropulu 146, J R Vlimant 146, C Wang 146, S Xie 146, R Y Zhu 146, J Alison 147, S An 147, M B Andrews 147, P Bryant 147, V Dutta 147, T Ferguson 147, A Harilal 147, C Liu 147, T Mudholkar 147, S Murthy 147, M Paulini 147, A Roberts 147, A Sanchez 147, W Terrill 147, J P Cumalat 148, W T Ford 148, A Hassani 148, G Karathanasis 148, E MacDonald 148, N Manganelli 148, F Marini 148, A Perloff 148, C Savard 148, N Schonbeck 148, K Stenson 148, K A Ulmer 148, S R Wagner 148, N Zipper 148, J Alexander 149, S Bright-Thonney 149, X Chen 149, D J Cranshaw 149, J Fan 149, X Fan 149, D Gadkari 149, S Hogan 149, J Monroy 149, J R Patterson 149, J Reichert 149, M Reid 149, A Ryd 149, J Thom 149, P Wittich 149, R Zou 149, M Albrow 150, M Alyari 150, O Amram 150, G Apollinari 150, A Apresyan 150, L A T Bauerdick 150, D Berry 150, J Berryhill 150, P C Bhat 150, K Burkett 150, J N Butler 150, A Canepa 150, G B Cerati 150, H W K Cheung 150, F Chlebana 150, G Cummings 150, J Dickinson 150, I Dutta 150, V D Elvira 150, Y Feng 150, J Freeman 150, A Gandrakota 150, Z Gecse 150, L Gray 150, D Green 150, A Grummer 150, S Grünendahl 150, D Guerrero 150, O Gutsche 150, R M Harris 150, R Heller 150, T C Herwig 150, J Hirschauer 150, L Horyn 150, B Jayatilaka 150, S Jindariani 150, M Johnson 150, U Joshi 150, T Klijnsma 150, B Klima 150, K H M Kwok 150, S Lammel 150, D Lincoln 150, R Lipton 150, T Liu 150, C Madrid 150, K Maeshima 150, C Mantilla 150, D Mason 150, P McBride 150, P Merkel 150, S Mrenna 150, S Nahn 150, J Ngadiuba 150, D Noonan 150, V Papadimitriou 150, N Pastika 150, K Pedro 150, C Pena 150,276, F Ravera 150, A Reinsvold Hall 150,277, L Ristori 150, E Sexton-Kennedy 150, N Smith 150, A Soha 150, L Spiegel 150, S Stoynev 150, J Strait 150, L Taylor 150, S Tkaczyk 150, N V Tran 150, L Uplegger 150, E W Vaandering 150, I Zoi 150, C Aruta 151, P Avery 151, D Bourilkov 151, L Cadamuro 151, P Chang 151, V Cherepanov 151, R D Field 151, E Koenig 151, M Kolosova 151, J Konigsberg 151, A Korytov 151, K H Lo 151, K Matchev 151, N Menendez 151, G Mitselmakher 151, K Mohrman 151, A Muthirakalayil Madhu 151, N Rawal 151, D Rosenzweig 151, S Rosenzweig 151, K Shi 151, J Wang 151, T Adams 152, A Al Kadhim 152, A Askew 152, N Bower 152, R Habibullah 152, V Hagopian 152, R Hashmi 152, R S Kim 152, S Kim 152, T Kolberg 152, G Martinez 152, H Prosper 152, P R Prova 152, O Viazlo 152, M Wulansatiti 152, R Yohay 152, J Zhang 152, B Alsufyani 153, M M Baarmand 153, S Butalla 153, T Elkafrawy 153,241, M Hohlmann 153, R Kumar Verma 153, M Rahmani 153, M R Adams 154, C Bennett 154, R Cavanaugh 154, S Dittmer 154, R Escobar Franco 154, O Evdokimov 154, C E Gerber 154, D J Hofman 154, J H Lee 154, D S Lemos 154, A H Merrit 154, C Mills 154, S Nanda 154, G Oh 154, B Ozek 154, D Pilipovic 154, T Roy 154, S Rudrabhatla 154, M B Tonjes 154, N Varelas 154, X Wang 154, Z Ye 154, J Yoo 154, M Alhusseini 155, D Blend 155, K Dilsiz 155,278, L Emediato 155, G Karaman 155, O K Köseyan 155, J-P Merlo 155, A Mestvirishvili 155,279, J Nachtman 155, O Neogi 155, H Ogul 155,280, Y Onel 155, A Penzo 155, C Snyder 155, E Tiras 155,281, B Blumenfeld 156, L Corcodilos 156, J Davis 156, A V Gritsan 156, L Kang 156, S Kyriacou 156, P Maksimovic 156, M Roguljic 156, J Roskes 156, S Sekhar 156, M Swartz 156, T Á Vámi 156, A Abreu 157, L F Alcerro Alcerro 157, J Anguiano 157, P Baringer 157, A Bean 157, Z Flowers 157, D Grove 157, J King 157, G Krintiras 157, M Lazarovits 157, C Le Mahieu 157, C Lindsey 157, J Marquez 157, N Minafra 157, M Murray 157, M Nickel 157, M Pitt 157, S Popescu 157,282, C Rogan 157, C Royon 157, R Salvatico 157, S Sanders 157, C Smith 157, Q Wang 157, G Wilson 157, B Allmond 158, A Ivanov 158, K Kaadze 158, A Kalogeropoulos 158, D Kim 158, Y Maravin 158, K Nam 158, J Natoli 158, D Roy 158, G Sorrentino 158, F Rebassoo 159, D Wright 159, A Baden 160, A Belloni 160, A Bethani 160, Y M Chen 160, S C Eno 160, N J Hadley 160, S Jabeen 160, R G Kellogg 160, T Koeth 160, Y Lai 160, S Lascio 160, A C Mignerey 160, S Nabili 160, C Palmer 160, C Papageorgakis 160, M M Paranjpe 160, L Wang 160, J Bendavid 161, W Busza 161, I A Cali 161, Y Chen 161, M D’Alfonso 161, J Eysermans 161, C Freer 161, G Gomez-Ceballos 161, M Goncharov 161, P Harris 161, D Hoang 161, D Kovalskyi 161, J Krupa 161, L Lavezzo 161, Y-J Lee 161, K Long 161, C Mironov 161, C Paus 161, D Rankin 161, C Roland 161, G Roland 161, S Rothman 161, Z Shi 161, G S F Stephans 161, J Wang 161, Z Wang 161, B Wyslouch 161, T J Yang 161, B Crossman 162, B M Joshi 162, C Kapsiak 162, M Krohn 162, D Mahon 162, J Mans 162, B Marzocchi 162, S Pandey 162, M Revering 162, R Rusack 162, R Saradhy 162, N Schroeder 162, N Strobbe 162, M A Wadud 162, L M Cremaldi 163, K Bloom 164, M Bryson 164, D R Claes 164, C Fangmeier 164, F Golf 164, G Haza 164, J Hossain 164, C Joo 164, I Kravchenko 164, I Reed 164, J E Siado 164, W Tabb 164, A Vagnerini 164, A Wightman 164, F Yan 164, D Yu 164, A G Zecchinelli 164, G Agarwal 165, H Bandyopadhyay 165, L Hay 165, I Iashvili 165, A Kharchilava 165, M Morris 165, D Nguyen 165, S Rappoccio 165, H Rejeb Sfar 165, A Williams 165, E Barberis 166, Y Haddad 166, Y Han 166, A Krishna 166, J Li 166, M Lu 166, G Madigan 166, R Mccarthy 166, D M Morse 166, V Nguyen 166, T Orimoto 166, A Parker 166, L Skinnari 166, A Tishelman-Charny 166, B Wang 166, D Wood 166, S Bhattacharya 167, J Bueghly 167, Z Chen 167, K A Hahn 167, Y Liu 167, Y Miao 167, D G Monk 167, M H Schmitt 167, A Taliercio 167, M Velasco 167, R Band 168, R Bucci 168, S Castells 168, M Cremonesi 168, A Das 168, R Goldouzian 168, M Hildreth 168, K W Ho 168, K Hurtado Anampa 168, C Jessop 168, K Lannon 168, J Lawrence 168, N Loukas 168, L Lutton 168, J Mariano 168, N Marinelli 168, I Mcalister 168, T McCauley 168, C Mcgrady 168, C Moore 168, Y Musienko 168,201, H Nelson 168, M Osherson 168, R Ruchti 168, A Townsend 168, M Wayne 168, H Yockey 168, M Zarucki 168, L Zygala 168, A Basnet 169, B Bylsma 169, M Carrigan 169, L S Durkin 169, C Hill 169, M Joyce 169, A Lesauvage 169, M Nunez Ornelas 169, K Wei 169, B L Winer 169, B R Yates 169, F M Addesa 170, H Bouchamaoui 170, P Das 170, G Dezoort 170, P Elmer 170, A Frankenthal 170, B Greenberg 170, N Haubrich 170, S Higginbotham 170, G Kopp 170, S Kwan 170, D Lange 170, A Loeliger 170, D Marlow 170, I Ojalvo 170, J Olsen 170, A Shevelev 170, D Stickland 170, C Tully 170, S Malik 171, A S Bakshi 172, V E Barnes 172, S Chandra 172, R Chawla 172, S Das 172, A Gu 172, L Gutay 172, M Jones 172, A W Jung 172, D Kondratyev 172, A M Koshy 172, M Liu 172, G Negro 172, N Neumeister 172, G Paspalaki 172, S Piperov 172, V Scheurer 172, J F Schulte 172, M Stojanovic 172, J Thieman 172, A K Virdi 172, F Wang 172, W Xie 172, J Dolen 173, N Parashar 173, A Pathak 173, D Acosta 174, A Baty 174, T Carnahan 174, K M Ecklund 174, P J Fernández Manteca 174, S Freed 174, P Gardner 174, F J M Geurts 174, A Kumar 174, W Li 174, O Miguel Colin 174, B P Padley 174, R Redjimi 174, J Rotter 174, E Yigitbasi 174, Y Zhang 174, A Bodek 175, P de Barbaro 175, R Demina 175, J L Dulemba 175, C Fallon 175, A Garcia-Bellido 175, O Hindrichs 175, A Khukhunaishvili 175, P Parygin 175,272, E Popova 175,272, R Taus 175, G P Van Onsem 175, K Goulianos 176, B Chiarito 177, J P Chou 177, Y Gershtein 177, E Halkiadakis 177, A Hart 177, M Heindl 177, D Jaroslawski 177, O Karacheban 177,215, I Laflotte 177, A Lath 177, R Montalvo 177, K Nash 177, H Routray 177, S Salur 177, S Schnetzer 177, S Somalwar 177, R Stone 177, S A Thayil 177, S Thomas 177, J Vora 177, H Wang 177, H Acharya 178, D Ally 178, A G Delannoy 178, S Fiorendi 178, T Holmes 178, N Karunarathna 178, L Lee 178, E Nibigira 178, S Spanier 178, D Aebi 179, M Ahmad 179, O Bouhali 179,283, M Dalchenko 179, R Eusebi 179, J Gilmore 179, T Huang 179, T Kamon 179,284, H Kim 179, S Luo 179, S Malhotra 179, R Mueller 179, D Overton 179, D Rathjens 179, A Safonov 179, N Akchurin 180, J Damgov 180, V Hegde 180, A Hussain 180, Y Kazhykarim 180, K Lamichhane 180, S W Lee 180, A Mankel 180, T Mengke 180, S Muthumuni 180, T Peltola 180, I Volobouev 180, A Whitbeck 180, E Appelt 181, S Greene 181, A Gurrola 181, W Johns 181, R Kunnawalkam Elayavalli 181, A Melo 181, F Romeo 181, P Sheldon 181, S Tuo 181, J Velkovska 181, J Viinikainen 181, B Cardwell 182, B Cox 182, J Hakala 182, R Hirosky 182, A Ledovskoy 182, A Li 182, C Neu 182, C E Perez Lara 182, P E Karchin 183, A Aravind 184, S Banerjee 184, K Black 184, T Bose 184, S Dasu 184, I De Bruyn 184, P Everaerts 184, C Galloni 184, H He 184, M Herndon 184, A Herve 184, C K Koraka 184, A Lanaro 184, R Loveless 184, J Madhusudanan Sreekala 184, A Mallampalli 184, A Mohammadi 184, S Mondal 184, G Parida 184, D Pinna 184, A Savin 184, V Shang 184, V Sharma 184, W H Smith 184, D Teague 184, H F Tsoi 184, W Vetens 184, A Warden 184, S Afanasiev 185, V Andreev 185, Yu Andreev 185, T Aushev 185, M Azarkin 185, A Babaev 185, A Belyaev 185,268, V Blinov 185,285, E Boos 185, V Borshch 185, D Budkouski 185, V Chekhovsky 185, R Chistov 185,285, M Danilov 185,285, A Dermenev 185, T Dimova 185,285, D Druzhkin 185,286, M Dubinin 185,276, L Dudko 185, A Ershov 185, G Gavrilov 185, V Gavrilov 185, S Gninenko 185, V Golovtcov 185, N Golubev 185, I Golutvin 185, I Gorbunov 185, A Gribushin 185, Y Ivanov 185, V Kachanov 185, L Kardapoltsev 185,285, V Karjavine 185, A Karneyeu 185, V Kim 185,285, M Kirakosyan 185, D Kirpichnikov 185, M Kirsanov 185, V Klyukhin 185, O Kodolova 185,287, D Konstantinov 185, V Korenkov 185, A Kozyrev 185,285, N Krasnikov 185, A Lanev 185, P Levchenko 185,288, N Lychkovskaya 185, V Makarenko 185, A Malakhov 185, V Matveev 185,285, V Murzin 185, A Nikitenko 185,287,289, S Obraztsov 185, V Oreshkin 185, V Palichik 185, V Perelygin 185, S Petrushanko 185, S Polikarpov 185,285, V Popov 185, O Radchenko 185,285, M Savina 185, V Savrin 185, M Sergeev 185, V Shalaev 185, S Shmatov 185, S Shulha 185, Y Skovpen 185,285, S Slabospitskii 185, V Smirnov 185, A Snigirev 185, D Sosnov 185, V Sulimov 185, E Tcherniaev 185, A Terkulov 185, O Teryaev 185, I Tlisova 185, A Toropin 185, L Uvarov 185, A Uzunian 185, A Vorobyev 185, N Voytishin 185, B S Yuldashev 185,290, A Zarubin 185, I Zhizhin 185, A Zhokin 185
PMCID: PMC11480154  PMID: 39422214

Abstract

Using proton–proton collision data corresponding to an integrated luminosity of 140fb-1 collected by the CMS experiment at s=13TeV, the Λb0J/ψΞ-K+ decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the Λb0ψ(2S)Λ decay, is measured to be B(Λb0J/ψΞ-K+)/B(Λb0ψ(2S)Λ)=[3.38±1.02±0.61±0.03]%, where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in B(ψ(2S)J/ψπ+π-) and B(Ξ-Λπ-).

Introduction

Multibody decays of beauty hadrons present a rich laboratory to search for intermediate resonances in the decay products. When decay products contain a charmonium state, such intermediate resonances could decay into a charmonium meson and a hadron, which could be a manifestation of their exotic nature. An important turning point in exotic spectroscopy was achieved at the LHC, when the LHCb Collaboration reported the observation of statistically significant J/ψp pentaquark-like structures in the decay of the lightest beauty baryon Λb0J/ψpK- [1]. Various interpretations of these structures have been proposed [2, 3], including tightly bound hidden-charm [] pentaquark states [4, 5], loosely bound molecular baryon-meson states [68], or being due to a double triangle singularity [9]. More recently, additional exotic states have been reported by LHCb in the decays Λb0J/ψpK-  [10], Ξb-J/ψΛK- [11], Inline graphic [12], and B-J/ψΛp [13]. Up to now, the hidden-charm pentaquark candidates have been reported only in J/ψp and J/ψΛ systems. Investigation of other channels with heavier baryons in the decay products, such as Ξ- and Ω-, could unveil the existence of doubly or triply strange pentaquarks [14, 15].

In this paper, we report on the search for the Λb0J/ψΞ-K+ decay, where the J/ψμ+μ-, Ξ-Λπ-, and Λpπ- channels are used to reconstruct the intermediate decay products. Charge-conjugate states are implied throughout the text. The measurement of the ratio of branching fractions

RB(Λb0J/ψΞ-K+)B(Λb0ψ(2S)Λ)=N(Λb0J/ψΞ-K+)N(Λb0ψ(2S)Λ)×ϵψ(2S)ΛϵJ/ψΞ-K+B(ψ(2S)J/ψπ+π-)B(Ξ-Λπ-) 1

is also reported, where N is the measured Λb0 yield and ϵ is the total efficiency. The normalization channel is chosen to be Λb0ψ(2S)Λ, with the subsequent ψ(2S)J/ψπ+π- and J/ψμ+μ- decays, because of its similar decay topology and kinematics to the signal decay, leading to the reduction of many systematic uncertainties. The branching fractions of the intermediate decays B(J/ψμ+μ-) and B(Λpπ-) cancel in the ratio. Invariant mass distributions of the three two-body combinations for the signal channel are also presented in order to look for intermediate resonances.

The analysis uses proton–proton (pp) collision data recorded by the CMS experiment in 2016–2018, at s=13TeV, corresponding to an integrated luminosity of 140fb-1 [1618]. Tabulated results are provided in the HEPData record for this analysis [19].

The CMS detector and simulated event samples

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [20].

Muons are measured in the pseudorapidity range |η|<2.4, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching muons to tracks measured in the silicon tracker results in a transverse momentum (pT) resolution for muons with pT up to 100GeV of 1% in the barrel and 3% in the endcaps. The silicon tracker used in 2016 measured charged particles within the range |η|<2.5. For nonisolated particles of 1<pT<10GeV and |η|<1.4, the track resolutions were typically 1.5% in pT and 25–90 μm in the transverse impact parameter [21]. At the start of 2017, a new pixel detector was installed [22]; the upgraded tracker measured nonisolated particles of 1<pT<10GeV up to |η|<3 with typical resolutions of 1.5% in pT and 20–75μm in the transverse impact parameter [23].

Events of interest are selected using a two-tiered trigger system [24]. The first level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events at a rate of around 100 kHz within a fixed latency of about 4μs  [25]. The second level, known as the high-level trigger (HLT), consists of a farm of computing processors running a version of the full event reconstruction software optimized for fast processing, and reduces the event rate to around 1 kHz before data storage. All events used in this analysis are selected by a set of triggers requiring two identified muons of opposite charge plus an additional track to form a secondary vertex, displaced from the region of the pp interactions. The trigger demanded for each muon to have pT>4GeV and to pass within 2 cm of the beam axis. The dimuon system was required to have pT>6.9GeV, invariant mass between 2.9 and 3.3GeV, a vertex fit probability greater than 10%, a separation of the secondary vertex relative to the beam axis in the transverse plane larger than 3 standard deviations (s.d.), and a cosine of the angle in the transverse plane between the dimuon momentum vector and the vector joining the beam axis and the dimuon vertex greater than 0.9. The additional track was required to have pT>0.8(1.2)GeV and an impact parameter with respect to the beam axis greater than 0 (2) s.d., for data collected in 2016 (2017–2018). Finally, the two muons and the additional track were required to originate from the same vertex with a χ2 per degree of freedom (dof) less than 10.

Monte Carlo (MC) simulated event samples are generated with Pythia v8.240 [26] using the CP5 underlying event tune [27]. The evtgen 1.6.0 [28] program models the beauty baryon decays Λb0J/ψΞ-K+ and Λb0ψ(2S)Λ with a phase space decay model, followed by the ψ(2S)J/ψπ+π- and J/ψμ+μ- decays. Final-state radiation is included in evtgen using photos 3.61 [29]. The events are then passed through a detailed Geant4-based simulation [30] of the CMS detector, including also the decays of long-lived hyperons Ξ-Λπ- and Λpπ-, followed by the trigger and reconstruction algorithms identical to those used for the collision data. The simulation includes additional interactions due to multiple pp collisions in each bunch crossing, with the same distribution as observed in the experiment.

Event reconstruction and selection

The reconstruction for all the decays considered in this analysis starts by finding two muons of opposite charge, which must match those that triggered the event readout and pass the soft-muon identification criteria [31]. The offline selection for both muons requires pT(μ±)>3GeV, |η(μ±)|<2.4, χ2 fit probability to a common dimuon vertex Pvtx(μ+μ-)>1%, and dimuon invariant mass 2.9<m(μ+μ-)<3.3GeV.

The Λpπ- candidates are selected from displaced two-prong vertices as described in Ref. [32]. The track with the higher momentum is assumed to be the proton one, and together with the pion track it is fit to a common vertex with their invariant mass constrained to the known Λ hyperon mass of mPDG(Λ)=1115.683MeV [33]. The χ2 fit probability for the Λ vertex is required to be Pvtx(pπ-)>1%.

For the signal channel, to form the Ξ-Λπ- candidates, an additional high-purity [21] track assumed to be a pion is selected with pT>0.2GeV. This track and the selected Λ candidate are then fit to a common vertex with the Λπ- mass constrained to the known Ξ- hyperon mass of mPDG(Ξ-)=1321.71 MeV  [33]. To form the Λb0J/ψΞ-K+ candidate, a high-purity track is chosen with an assigned kaon mass and pT(K+)>1.2GeV, which aligns with the HLT pT requirement. The final reconstruction step in the signal channel is the μ+μ-Ξ-K+ vertex fit with a χ2 probability above 1%, where the dimuon mass is constrained to the world-average J/ψ meson mass of 3096.9MeV [33].

For the normalization channel, two high-purity tracks of opposite charges with pT>0.4GeV, assumed to be pions from the ψ(2S)J/ψπ+π- decay, are selected. One of them is required to have pT>1.2GeV to match the HLT pT requirement. The Λb0 candidates are obtained by a vertex fit of the μ+μ-π+π-Λ system with a J/ψμ+μ- mass constraint, as for the signal channel. The invariant mass of the J/ψπ+π- candidates is required to be in the range 3.60<m(J/ψπ+π-)<3.95GeV.

From all reconstructed pp collision points in each event, the primary vertex (PV) is chosen as the one with the smallest Λb0 pointing angle, which is the angle between the momentum of the Λb0 candidate and the vector from the PV to the reconstructed Λb0 candidate vertex. If any of the tracks used in the Λb0 candidate reconstruction were included in the fit of the chosen PV, they are removed, and the PV is refitted.

Selection criteria for the signal channel Λb0J/ψΞ-K+ are optimized using the Punzi figure of merit [34]. The signal efficiency is evaluated using simulated event samples. Estimation of the background yield involves combining the collision data from the Λb0 mass sideband, excluding the signal region which spans twice the mass resolution around the known Λb0 mass. Additionally, the wrong-sign candidates (J/ψΞ-K- and J/ψΞ¯+K+) from the full mass range are included, after ensuring that the mass distribution of the wrong-sign candidates matches that of the correct-sign ones. Combining these two background sources reduces the impact of the statistical uncertainty in the optimization procedure. The variables used in the optimization include the pT of all decay products; the flight length significance in the transverse plane of the Λb0, Λ, and Ξ- baryon candidates and the corresponding pointing angles; the impact parameter significance with respect to the PV in the transverse plane for the tracks; the vertex fit probabilities; and the mass windows for hyperon candidates. The order of the cuts is determined randomly, and in several rounds of optimization this order was different each time; all rounds have converged to the same final set of optimized cuts. The resulting criteria are summarized in Table 1. The background is reduced by a factor of 15 after the optimization, whereas the signal efficiency is 70% of the initial selection described above. The selection criteria in the normalization channel Λb0ψ(2S)Λ are chosen to be the same, wherever possible, as in the signal channel, to reduce the systematic uncertainties. The J/ψπ+π- mass is required to be within 11.1MeV of the known ψ(2S) meson mass of 3686.1MeV [33], which corresponds to approximately 2.5 times the mass resolution.

Table 1.

Optimized selection criteria for the signal decay mode Λb0J/ψΞ-K+. The first two requirements are applied using the momenta before the corresponding mass constraint

Variable Selection
|m(pπ-)-mPDG(Λ)| <8 MeV
|m(Λπ-)-mPDG(Ξ-)| <6 MeV
pT(Λb0) >11.5 GeV
pT(J/ψ) >6.5 GeV
pT(Ξ-) >2.6 GeV
pT(Λ) >2.2 GeV
pT(K+) >1.2 GeV
μ+μ-Ξ-K+ vertex fit probability >5%
Λπ- vertex fit probability >5%
pπ- vertex fit probability >1%
Ξ- vertex displacement from Λb0 vertex >3 s.d.
Λ vertex displacement from Ξ- vertex >0 s.d.
Λb0 vertex displacement from PV >3 s.d.
Angle between Ξ- momentum and displacement <0.0447 rad
Angle between Λ momentum and displacement <0.14 rad
Angle between Λb0 momentum and displacement <0.0447 rad
PV impact parameter for pion from Ξ- decay >0.4 s.d.
PV impact parameter for kaon >0.4 s.d.

For the measurement of R defined in Eq. (1), the pion from the Ξ- decay is required to have pT>0.4GeV. Additionally, the HLT requirements are repeated offline by requiring pT(μ)>4GeV, pT(J/ψ)>6.9GeV, Pvtx(μ+μ-)>5%, and track (kaon for the signal channel, the harder of the two pions in the normalization channel) impact parameter above 2 s.d. with respect to the PV. These extra criteria ensure that events from potentially inadequately modeled phase space regions are avoided, as the reliability of the efficiency evaluation from simulated samples in those regions is questionable. Nevertheless, the reconstruction algorithm works reliably in those regions, and thus the corresponding events are used to study the mass distribution, as discussed in the following section.

In less than 5% of the events, multiple Λb0 candidates in the same channel are found. The rate is consistent in both channels and all candidates are used in the analysis. Selecting a single candidate has a negligible effect on the results.

Invariant mass distributions

The measured mass distribution of the ψ(2S)Λ candidates is shown in Fig. 1 (left) together with the results of an unbinned maximum likelihood fit. The signal is modeled with a Student’s t-distribution [35] with all parameters (mean, σ, n) free. The combinatorial background is described by an exponential function with a free slope parameter and normalization. The fitted mass of 5619.3±0.3MeV is in agreement with the world-average Λb0 mass of 5619.60±0.17MeV [33], and the mass resolution of 8.90±0.40MeV is slightly larger than, yet in agreement with, its value of 8.52MeV found in simulation. The measured yield is N(Λb0ψ(2S)Λ)=1744±63. The χ2 between the binned distribution and the fit function is 76.6 for 94 degrees of freedom, demonstrating the good quality of the fit.

Fig. 1.

Fig. 1

Measured ψ(2S)Λ (upper) and J/ψΞ-K+ (lower) invariant mass distributions and overlaid fit results

The measured invariant mass distribution of the selected J/ψΞ-K+ candidates is shown in Fig. 1 (lower). A narrow peak at the Λb0 mass is seen on top of a smooth background. The Λb0 signal is modeled with a Student’s t-distribution with mean and σ floating, but the n parameter fixed to the value found by fitting the simulated distribution, because of the limited signal yield of N(Λb0J/ψΞ-K+)=46±11. The background is fitted with an exponential function. The Λb0 mass returned by the fit (5625.9±3.2MeV) is within 2 s.d. of the world-average value [33]. The width of the signal peak (σ) is found to be 10.4±3.3MeV, consistent within 1.2 s.d. with the value found in simulation, 6.6±0.2MeV. The fit quality is good, as demonstrated by the χ2/dof=30.1/45 for the binned distribution.

The signal significance is evaluated using the likelihood ratio technique by applying the background-only and signal-plus-background hypotheses. In these two fits, a Gaussian constraint is applied on the background shape parameter to the one obtained from a fit to the wrong-sign data. Similarly, a Gaussian constraint is applied to the signal shape parameter n (from simulation) and the resolution σ=σMC(8.90/8.52). The correction factor is extracted from the normalization channel and accounts for the difference in the widths of the peak between the measured and simulated event samples. The mean value of the peak is also Gaussian-constrained with a central value and uncertainty equal to the known Λb0 mass and its uncertainty [33], respectively. The fit with the signal-plus-background model with these constraints returns a signal yield of 36±8 and is presented in Appendix A. Since the conditions of Wilks’ theorem [36] are satisfied, the asymptotic formulae of Ref. [37] (Eqs. (12) and (52)) are used to determine the Λb0J/ψΞ-K+ signal significance, which is found to be 5.8 standard deviations. To evaluate the effect of the choice of the model for fitting the signal significance, several alternative models of signal and background were tested, including double-Gaussian or Johnson [38] functions for the signal and a second-degree polynomial or a modified threshold function for the background. An alternative without a constraint on the background shape was also tested. The significance obtained with the alternative models varies in the range from 5.3 to 5.9 standard deviations. This allows us to claim the first observation of the Λb0J/ψΞ-K+ decay.

The sensitivity of this analysis to potential pentaquark signals in the intermediate invariant mass distributions of the Λb0J/ψΞ-K+ decay is limited by the low signal yield. The background-subtracted two-body invariant mass distributions, obtained with the sPlot technique [39], are shown in Fig. 2. The distributions do not show any clear peaks and agree, within uncertainties, with the predictions from the phase space simulation. The distributions are also consistent with the results of extracting the yields by fitting the Λb0 signal in each of the five intermediate invariant mass bins.

Fig. 2.

Fig. 2

Intermediate invariant mass distributions of the Λb0J/ψΞ-K+ decay. The filled circles and empty squares show the measured background-subtracted distributions and the results from the simulation with a phase-space model, respectively

For the measurement of R (Eq. (1)), more stringent requirements are used, as explained at the end of Sect. 3, and the measured signal yields decrease to 1179±47 and 23±7 for the Λb0ψ(2S)Λ and Λb0J/ψΞ-K+ channels, respectively, using unconstrained fits as for Fig. 1. These are the baseline results referred to in Sect. 6. The corresponding mass distributions and fits are presented in Fig. 3.

Fig. 3.

Fig. 3

Measured ψ(2S)Λ (upper) and J/ψΞ-K+ (lower) invariant mass distributions and corresponding fits used for the measurement of R

Efficiencies

Efficiencies for the signal and normalization channels are calculated using simulated event samples. The total efficiency is calculated by factorizing into two components: detector acceptance and a combined trigger, reconstruction, and selection efficiency.

As only the ratio of the total efficiencies is needed to measure R, the systematic uncertainties associated with the muon and track reconstruction are reduced. The obtained efficiency ratio is ϵψ(2S)Λ/ϵJ/ψΞ-K+=5.06±0.29, where the uncertainty reflects the limited size of the simulated samples. Efficiencies for different years of data-taking are combined with weights corresponding to the integrated luminosity collected in each year. The efficiency for the Λb0J/ψΞ-K+ channel is significantly lower than that for the Λb0ψ(2S)Λ channel for several reasons including the low energy release in the Ξ-Λπ- decay, resulting in a low-momentum pion track.

Systematic uncertainties

Many systematic uncertainties, related to the muon reconstruction and identification as well as to the trigger efficiency, partially cancel in the measured ratios. Since the signal and normalization channels have the same number of tracks in the final state, most uncertainties related to track reconstruction also cancel in the measured ratio R. However, the pT spectrum of kaons from the Λb0J/ψΞ-K+ decay is observed to differ from that of the highest-pT pion in the Λb0ψ(2S)Λ channel used for normalization. Despite the signal and normalization channels having the same number of final-state tracks, an uncertainty of 2.3% [40] is included, which reflects the difference in tracking efficiency between the measured and simulated event samples. The MC event samples are validated using the normalization channel by comparing the measured distributions of variables used in the event selection, after background subtraction, to those found in simulation; no significant discrepancies are found in most of the distributions. A small discrepancy was observed in the pT(Λb0) distribution, and the MC event samples for both channels were reweighted using pT(Λb0)-dependent weights so that the pT(Λb0) distribution in the weighted simulation sample matches the background-subtracted distribution measured in the Λb0ψ(2S)Λ channel. The efficiency ratio evaluated using these weighted MC samples is found to be ϵψ(2S)Λ/ϵJ/ψΞ-K+=4.82±0.39, which is lower by 4.7%, yet still in agreement with the value reported in the previous section. An uncertainty of 4.7% is assigned to account for potential mismodeling of the pT(Λb0) spectrum.

The systematic uncertainty related to the choice of the signal model is evaluated by testing three different models. For the normalization channel Λb0ψ(2S)Λ the signal shape parameters are floating, while for the signal channel Λb0J/ψΞ-K+ the mass resolution parameters are fixed to those found in simulation, after correcting the width of the peak for the ratio between the two resolutions in the measured and simulated event samples evaluated in the normalization channel. The tested models simultaneously vary the signal and normalization channels and use a Student’s t-distribution, a double-Gaussian, and a Johnson function [38] to model the signal. The largest deviation in the ratio of the Λb0 signal yields from the baseline value is taken as the systematic uncertainty.

The systematic uncertainty related to the choice of the background model is estimated in a similar way, with three alternative models: a second-degree polynomial, a threshold function [41, 42] multiplied by an exponential, and a threshold function multiplied by a first-degree polynomial.

By requiring the J/ψπ+π- invariant mass to be near the ψ(2S) mass, we aim to select Λb0ψ(2S)Λ decays. Nevertheless, other Λb0J/ψπ+π-Λ decays, either from different intermediate resonances or from four-body nonresonant decays may contribute. To estimate this contribution, we use the sPlot technique to subtract the background under the Λb0 peak and plot the J/ψπ+π- mass in an expanded mass region. The J/ψπ+π- mass is fitted with a signal component for the ψ(2S) and a background component for everything else. The integral of the background over the range used to select ψ(2S) events yields 30 events, which is 2.5% of the total yield (1179 events). This value is used as the systematic uncertainty related to non-ψ(2S) contributions in the normalization channel.

The uncertainty in the efficiency ratio due to the limited size of the simulated samples, calculated to be 5.6% in Sect. 5, is considered as a systematic uncertainty.

In order to assess the reliability of the efficiency evaluation from the simulated samples, the selection criteria on muon and J/ψ pT, dimuon vertex probability, track impact parameter, and pT of the soft pion from Ξ- decay are tightened, one at a time, until the signal efficiency decreases by 10 or 20% with respect to that obtained with the selection used for the R measurement. The analysis is repeated each time, and the value of R is re-calculated and compared to the baseline R value. The differences (d) between the two values and their uncertainties (δd), which also account for the correlation between the two values, are evaluated. The largest value of d2-(δd)2 among the different variations of the selection criteria is found to be 14.3% and is used as the systematic uncertainty in the efficiency ratio.

Table 2 summarizes the previously discussed systematic uncertainties in the ratio R. The total uncertainty is calculated as the sum in quadrature of the individual sources.

Table 2.

The relative systematic uncertainties in the measurement of R

Source Uncertainty (%)
Tracking efficiency 2.3
pT(Λb0) spectrum 4.7
Signal model 3.9
Background model 6.7
Non-ψ(2S) contribution 2.5
Limited size of MC samples 5.6
Selection efficiency 14.3
Total 18.2

Branching fraction ratio measurement

The branching fraction of the newly observed Λb0J/ψΞ-K+ decay, with respect to the Λb0ψ(2S)Λ one, is measured using Eq. (1) to be

RB(Λb0J/ψΞ-K+)B(Λb0ψ(2S)Λ)=[3.38±1.02(stat)±0.61(syst)±0.03(B)]%,

where the last uncertainty is related to the uncertainties in the branching fractions B(ψ(2S)J/ψπ+π-)=34.68±0.30% and B(Ξ-Λπ-)=99.887±0.035% [33].

Summary

The Λb0J/ψΞ-K+ decay is observed with a significance exceeding 5 standard deviations using s=13TeV proton–proton collision data corresponding to an integrated luminosity of 140fb-1 collected by the CMS experiment. The branching fraction is measured with respect to the Λb0ψ(2S)Λ decay to be B(Λb0J/ψΞ-K+)/B(Λb0ψ(2S)Λ)=[3.38±1.02(stat)±0.61(syst)±0.03(B)]%. The distributions of intermediate invariant masses m(J/ψΞ-), m(J/ψK+), and m(Ξ-K+) from the Λb0J/ψΞ-K+ decay are also presented. This is the first discovered multibody decay containing the J/ψΞ- system, which opens the possibility to search for doubly-strange hidden-charm pentaquarks when more data are collected. The new results are important for understanding the strong interaction processes in hadronic decays of beauty baryons and the possible formation of exotic multiquark states.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS detector, and the supporting computing infrastructure provided by the following funding agencies: SC (Armenia), BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); ERC PRG, RVTT3 and TK202 (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); SRNSF (Georgia); BMBF, DFG, and HGF (Germany); GSRI (Greece); NKFIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MES and NSC (Poland); FCT (Portugal); MESTD (Serbia); MCIN/AEI and PCTI (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); MHESI and NSTDA (Thailand); TUBITAK and TENMAK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 758316, 765710, 824093, and COST Action CA16108 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Science Committee, project no. 22rl-037 (Armenia); the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010 and Fundamental Research Funds for the Central Universities (China); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Shota Rustaveli National Science Foundation, grant FR-22-985 (Georgia); the Deutsche Forschungsgemeinschaft (DFG), under Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306, and under project number 400140256 - GRK2497; the Hellenic Foundation for Research and Innovation (HFRI), Project Number 2288 (Greece); the Hungarian Academy of Sciences, the New National Excellence Program - ÚNKP, the NKFIH research grants K 124845, K 124850, K 128713, K 128786, K 129058, K 131991, K 133046, K 138136, K 143460, K 143477, 2020-2.2.1-ED-2021-00181, and TKP2021-NKTA-64 (Hungary); the Council of Science and Industrial Research, India; ICSC – National Research Center for High Performance Computing, Big Data and Quantum Computing, funded by the EU NexGeneration program (Italy); the Latvian Council of Science; the Ministry of Education and Science, project no. 2022/WK/14, and the National Science Center, contracts Opus 2021/41/B/ST2/01369 and 2021/43/B/ST2/01552 (Poland); the Fundação para a Ciência e a Tecnologia, grant CEECIND/01334/2018 (Portugal); the National Priorities Research Program by Qatar National Research Fund; MCIN/AEI/10.13039/501100011033, ERDF “a way of making Europe”, and the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2017-0765 and Programa Severo Ochoa del Principado de Asturias (Spain); the Chulalongkorn Academic into Its 2nd Century Project Advancement Project, and the National Science, Research and Innovation Fund via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation, grant B37G660013 (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

Invariant mass distribution fit with constraints

The fit of the measured J/ψΞ-K+ invariant mass distribution with constraints on the background shape parameter, signal shape parameter, resolution, and the mean value of the peak is presented in Fig. 4. The fit quality is good, as demonstrated by χ2/dof=35.6/44 for the binned distribution.

Fig. 4.

Fig. 4

Measured J/ψΞ-K+ invariant mass distribution and overlaid constrained fit result

Data Availability Statement

This manuscript has associated data in a data repository. [Author’s comment: Some data used for this analysis may be made available. Almost certainly not all data will be released near term.]

Code Availability Statement

Code/software cannot be made available for reasons disclosed in the code availability statement. [Author’s comment: Some software (the core software) is available. Not all code used is available.]

Declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Footnotes

T. Tuuva, M. Narain, S. Wimpenny, A. Vorobyev: Deceased.

References

  • 1.LHCb Collaboration, Observation of Inline graphic resonances consistent with pentaquark states in Inline graphic decays. Phys. Rev. Lett. 115, 072001 (2015). 10.1103/PhysRevLett.115.072001. arXiv:1507.03414 [DOI] [PubMed]
  • 2.N. Brambilla et al., The Inline graphic states: experimental and theoretical status and perspectives. Phys. Rep. 873, 1 (2020). 10.1016/j.physrep.2020.05.001. arXiv:1907.07583
  • 3.H.-X. Chen et al., An updated review of the new hadron states. Rep. Prog. Phys. 86, 026201 (2023). 10.1088/1361-6633/aca3b6. arXiv:2204.02649 [DOI] [PubMed]
  • 4.L. Maiani, A.D. Polosa, V. Riquer, The new pentaquarks in the diquark model. Phys. Lett. B 749, 289 (2015). 10.1016/j.physletb.2015.08.008. arXiv:1507.04980
  • 5.E. Santopinto, A. Giachino, Compact pentaquark structures. Phys. Rev. D 96, 014014 (2017). 10.1103/PhysRevD.96.014014. arXiv:1604.03769 [Google Scholar]
  • 6.L. Roca, J. Nieves, E. Oset, LHCb pentaquark as a Inline graphic molecular state. Phys. Rev. D 92, 094003 (2015). 10.1103/PhysRevD.92.094003. arXiv:1507.04249
  • 7.M.I. Eides, V.Y. Petrov, M.V. Polyakov, Pentaquarks with hidden charm as hadroquarkonia. Eur. Phys. J. C 78, 36 (2018). 10.1140/epjc/s10052-018-5530-9. arXiv:1709.09523
  • 8.M.-L. Du et al., Interpretation of the LHCb Inline graphic states as hadronic molecules and hints of a narrow Inline graphic. Phys. Rev. Lett. 124, 072001 (2020). 10.1103/PhysRevLett.124.072001. arXiv:1910.11846 [DOI] [PubMed]
  • 9.S.X. Nakamura, Inline graphic, Inline graphic, and Inline graphic as double triangle cusps. Phys. Rev. D 103, 111503 (2021). 10.1103/PhysRevD.103.L111503. arXiv:2103.06817
  • 10.LHCb Collaboration, Observation of a narrow pentaquark state, Inline graphic, and of two-peak structure of the Inline graphic. Phys. Rev. Lett. 122, 222001 (2019). 10.1103/PhysRevLett.122.222001. arXiv:1904.03947 [DOI] [PubMed]
  • 11.LHCb Collaboration, Evidence of a Inline graphic structure and observation of excited Inline graphic states in the Inline graphic decay. Sci. Bull. 66, 1278 (2021). 10.1016/j.scib.2021.02.030. arXiv:2012.10380 [DOI] [PubMed]
  • 12.LHCb Collaboration, Evidence for a new structure in the Inline graphic and Inline graphic systems in Inline graphic decays. Phys. Rev. Lett. 128, 062001 (2022). 10.1103/PhysRevLett.128.062001. arXiv:2108.04720
  • 13.LHCb Collaboration, Observation of a Inline graphic resonance consistent with a strange pentaquark candidate in Inline graphic decays. Phys. Rev. Lett. 131, 031901 (2023). 10.1103/PhysRevLett.131.031901. arXiv:2210.10346 [DOI] [PubMed]
  • 14.K. Azizi, Y. Sarac, H. Sundu, Investigation of hidden-charm double strange pentaquark candidate Inline graphic via its mass and strong decays. Eur. Phys. J. C 82, 543 (2022). 10.1140/epjc/s10052-022-10495-7. arXiv:2112.15543
  • 15.F.-L. Wang, X.-D. Yang, R. Chen, X. Liu, Hidden-charm pentaquarks with triple strangeness due to the Inline graphic interactions. Phys. Rev. D 103, 054025 (2021). 10.1103/PhysRevD.103.054025. arXiv:2101.11200
  • 16.CMS Collaboration, Precision luminosity measurement in proton–proton collisions at Inline graphic 13 TeV in 2015 and 2016 at CMS. Eur. Phys. J. C 81, 800 (2021). 10.1140/epjc/s10052-021-09538-2. arXiv:2104.01927 [DOI] [PMC free article] [PubMed]
  • 17.CMS Collaboration, CMS luminosity measurement for the 2017 data-taking period at Inline graphic, CMS Physics Analysis Summary CMS-PAS-LUM-17-004 (2018). https://cds.cern.ch/record/2621960
  • 18.CMS Collaboration, CMS luminosity measurement for the 2018 data-taking period at Inline graphic TeV, CMS Physics Analysis Summary CMS-PAS-LUM-18-002 (2019). https://cds.cern.ch/record/2676164
  • 19.HEPData record for this analysis (2024). 10.17182/hepdata.145642
  • 20.CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). 10.1088/1748-0221/3/08/S08004
  • 21.C.M.S. Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 9, P10009 (2014). 10.1088/1748-0221/9/10/P10009. arXiv:1405.6569 [Google Scholar]
  • 22.CMS Tracker Collaboration, The CMS Phase-1 pixel detector upgrade. JINST 16, P02027 (2021). 10.1088/1748-0221/16/02/P02027. arXiv:2012.14304
  • 23.CMS Collaboration, Track impact parameter resolution for the full pseudo rapidity coverage in the 2017 dataset with the CMS Phase-1 pixel detector. CMS Detector Performance Note CMS-DP-2020-049, 2020. https://cds.cern.ch/record/2743740
  • 24.CMS Collaboration, The CMS trigger system. JINST 12, P01020 (2017). 10.1088/1748-0221/12/01/P01020. arXiv:1609.02366
  • 25.CMS Collaboration, Performance of the CMS Level-1 trigger in proton–proton collisions at Inline graphic TeV. JINST 15, P10017 (2020). 10.1088/1748-0221/15/10/P10017. arXiv:2006.10165
  • 26.T. Sjöstrand et al., An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159 (2015). 10.1016/j.cpc.2015.01.024. arXiv:1410.3012
  • 27.CMS Collaboration, Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements. Eur. Phys. J. C 80, 4 (2020). 10.1140/epjc/s10052-019-7499-4. arXiv:1903.12179 [DOI] [PMC free article] [PubMed]
  • 28.D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Methods A 462, 152 (2001). 10.1016/S0168-9002(01)00089-4 [Google Scholar]
  • 29.E. Barberio, Z. Wa̧s, PHOTOS—a universal Monte Carlo for QED radiative corrections: version 2.0. Comput. Phys. Commun. 79, 291 (1994). 10.1016/0010-4655(94)90074-4
  • 30.GEANT4 Collaboration, Geant4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). 10.1016/S0168-9002(03)01368-8
  • 31.CMS Collaboration, Performance of the CMS muon detector and muon reconstruction with proton–proton collisions at Inline graphic 13 TeV. JINST 13, P06015 (2018). 10.1088/1748-0221/13/06/P06015. arXiv:1804.04528
  • 32.C.M.S. Collaboration, CMS tracking performance results from early LHC operation. Eur. Phys. J. C 70, 1165 (2010). 10.1140/epjc/s10052-010-1491-3. arXiv:1007.1988 [Google Scholar]
  • 33.Particle Data Group Collaboration, Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022). 10.1093/ptep/ptac097
  • 34.G. Punzi, Sensitivity of searches for new signals and its optimization, in Proceedings of PHYSTAT 2003, Statistical Problems in Particle Physics, Astrophysics and Cosmology, eConf C030908 (2003), p. MODT002. arXiv:physics/0308063
  • 35.S. Jackman, Bayesian Analysis for the Social Sciences (Wiley, New Jersey, 2009). 10.1002/9780470686621 [Google Scholar]
  • 36.S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60 (1938). 10.1214/aoms/1177732360 [Google Scholar]
  • 37.G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011) (Erratum: 10.1140/epjc/s10052-011-1554-0). 10.1140/epjc/s10052-013-2501-z. arXiv:1007.1727
  • 38.N.L. Johnson, Systems of frequency curves generated by methods of translation. Biometrika 36, 149 (1949). 10.2307/2332539 [PubMed] [Google Scholar]
  • 39.M. Pivk, F.R. Le Diberder, Inline graphic: a statistical tool to unfold data distributions. Nucl. Instrum. Methods A 555, 356 (2005). 10.1016/j.nima.2005.08.106. arXiv:physics/0402083
  • 40.CMS Collaboration, Tracking performances for charged pions with Run2 legacy data, CMS Detector Performance Note CMS-DP-2022-012, 2022. https://cds.cern.ch/record/2810814
  • 41.CMS Collaboration, Observation of a new excited beauty strange baryon decaying to Inline graphic. Phys. Rev. Lett. 126, 252003 (2021). 10.1103/PhysRevLett.126.252003. arXiv:2102.04524 [DOI] [PubMed]
  • 42.CMS Collaboration, Study of excited Inline graphic states decaying to Inline graphic in proton-proton collisions at Inline graphic 13 TeV. Phys. Lett. B 803, 135345 (2020). 10.1016/j.physletb.2020.135345. arXiv:2001.06533

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Data Availability Statement

This manuscript has associated data in a data repository. [Author’s comment: Some data used for this analysis may be made available. Almost certainly not all data will be released near term.]

Code/software cannot be made available for reasons disclosed in the code availability statement. [Author’s comment: Some software (the core software) is available. Not all code used is available.]


Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES