Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Jun 15;244(3):617–623. doi: 10.1042/bj2440617

Effects of Ca2+, Mg2+ and calmodulin on the formation and decomposition of the phosphorylated intermediate of the erythrocyte Ca2+-stimulated ATPase.

B G Allen 1, S Katz 1, B D Roufogalis 1
PMCID: PMC1148041  PMID: 2965571

Abstract

Formation of the phosphorylated intermediate (ECaP) of the human erythrocyte Ca2+-stimulated ATPase (Ca2+-ATPase) was more rapid and reached steady state sooner at 400 microM-Ca2+ than at 1 microM-Ca2+. Calmodulin increased the apparent rate of ECaP formation at 1 microM-Ca2+, whereas at 400 microM-Ca2+, calmodulin decreased the steady-state level of the ECaP without affecting its apparent rate of formation. Removal of endogenous Mg2+ with trans-1,2-diaminocyclohexane-NNN'N'-tetra-acetic acid, which decreased both the velocity and Ca2+-sensitivity of the Ca2+-ATPase, did not alter the Ca2+-sensitivity or the apparent rate of formation of ECaP. ECaP formation at high Ca2+ concentrations was not affected by Mg2+ concentrations as high as 1 mM, and the ECaP could be dephosphorylated by ADP and ATP along either the forward or reverse pathways. The results suggest that high Ca2+ concentrations inhibit Ca2+-ATPase activity by preventing dephosphorylation of the E2P complex, rather than by inhibition of the transformation from E1CaP ('high-Ca2+-affinity' ECaP) to E2CaP ('lower-energy' ECaP).

Full text

PDF
617

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Jobore A., Minocherhomjee A. M., Villalobo A., Roufogalis B. D. Active calcium transport in normal and abnormal human erythrocytes. Prog Clin Biol Res. 1984;159:243–292. [PubMed] [Google Scholar]
  2. Al-Jobore A., Roufogalis B. D. Phospholipid and calmodulin activation of solubilized calcium-transport ATPase from human erythrocytes: regulation by magnesium. Can J Biochem. 1981 Nov-Dec;59(11-12):880–888. doi: 10.1139/o81-123. [DOI] [PubMed] [Google Scholar]
  3. Allen B. G., Bridges M., Roufogalis B. D., Katz S. Investigation of (Ca2+ + Mg2+)-ATPase phosphoprotein formation in erythrocyte membranes of patients with cystic fibrosis. Cell Calcium. 1986 Jun;7(3):161–168. doi: 10.1016/0143-4160(86)90019-9. [DOI] [PubMed] [Google Scholar]
  4. Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
  5. Carafoli E., Niggli V., Penniston J. T. Purification and reconstruction of the calcium, magnesium ATPase of the erythrocyte membrane. Ann N Y Acad Sci. 1980;358:159–168. doi: 10.1111/j.1749-6632.1980.tb15394.x. [DOI] [PubMed] [Google Scholar]
  6. Ferreira H. G., Lew V. L. Use of ionophore A23187 to measure cytoplasmic Ca buffering and activation of the Ca pump by internal Ca. Nature. 1976 Jan 1;259(5538):47–49. doi: 10.1038/259047a0. [DOI] [PubMed] [Google Scholar]
  7. Garrahan P. J., Rega A. F. Activation of partial reactions of the Ca2+-ATPase from human red cells by Mg2+ and ATP. Biochim Biophys Acta. 1978 Oct 19;513(1):59–65. doi: 10.1016/0005-2736(78)90111-6. [DOI] [PubMed] [Google Scholar]
  8. Goldstein D. A. Calculation of the concentrations of free cations and cation-ligand complexes in solutions containing multiple divalent cations and ligands. Biophys J. 1979 May;26(2):235–242. doi: 10.1016/S0006-3495(79)85247-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graf E., Penniston J. T. CaATP: the substrate, at low ATP concentrations, of Ca2+ ATPase from human erythrocyte membranes. J Biol Chem. 1981 Feb 25;256(4):1587–1592. [PubMed] [Google Scholar]
  10. Jeffery D. A., Roufogalis B. D., Katz S. The effect of calmodulin on the phosphoprotein intermediate of Mg2+-dependent Ca2+-stimulated adenosine triphosphatase in human erythrocyte membranes. Biochem J. 1981 Feb 15;194(2):481–486. doi: 10.1042/bj1940481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kosk-Kosicka D., Inesi G. Cooperative calcium binding and calmodulin regulation in the calcium-dependent adenosine triphosphatase purified from the erythrocyte membrane. FEBS Lett. 1985 Sep 9;189(1):67–71. doi: 10.1016/0014-5793(85)80843-7. [DOI] [PubMed] [Google Scholar]
  12. Kosk-Kosicka D., Scaillet S., Inesi G. The partial reactions in the catalytic cycle of the calcium-dependent adenosine triphosphatase purified from erythrocyte membranes. J Biol Chem. 1986 Mar 5;261(7):3333–3338. [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Larocca J. N., Rega A. F., Garrahan P. J. Phosphorylation and dephosphorylation of the Ca2+ pump of human red cells in the presence of monovalent cations. Biochim Biophys Acta. 1981 Jul 6;645(1):10–16. doi: 10.1016/0005-2736(81)90505-8. [DOI] [PubMed] [Google Scholar]
  15. Larsen F. L., Hinds T. R., Vincenzi F. F. On the red blood cell Ca2+-pump: an estimate of stoichiometry. J Membr Biol. 1978 Jul 18;41(4):361–376. doi: 10.1007/BF01872000. [DOI] [PubMed] [Google Scholar]
  16. Lichtner R., Wolf H. U. Phosphorylation of the isolated high-affinity (Ca2+ + Mg2+) ATPase of the human erythrocyte membrane. Biochim Biophys Acta. 1980 Jun 6;598(3):472–485. doi: 10.1016/0005-2736(80)90028-0. [DOI] [PubMed] [Google Scholar]
  17. Minocherhomjee A. E., Al-Jobore A., Roufogalis B. D. Modulation of the calcium-transport ATPase in human erythrocytes by anions. Biochim Biophys Acta. 1982 Aug 25;690(1):8–14. doi: 10.1016/0005-2736(82)90232-2. [DOI] [PubMed] [Google Scholar]
  18. Muallem S., Karlish S. J. Regulatory interaction between calmodulin and ATP on the red cell Ca2+ pump. Biochim Biophys Acta. 1980 Apr 24;597(3):631–636. doi: 10.1016/0005-2736(80)90235-7. [DOI] [PubMed] [Google Scholar]
  19. Muallem S., Karlish S. J. Studies on the mechanism of regulation of the red-cell Ca2+ pump by calmodulin and ATP. Biochim Biophys Acta. 1981 Sep 21;647(1):73–86. doi: 10.1016/0005-2736(81)90296-0. [DOI] [PubMed] [Google Scholar]
  20. Rega A. F., Garrahan P. J. Calcium ion-dependent dephosphorylation of the Ca2+-ATPase of human red-cells by ADP. Biochim Biophys Acta. 1978 Feb 2;507(1):182–184. doi: 10.1016/0005-2736(78)90386-3. [DOI] [PubMed] [Google Scholar]
  21. Rega A. F., Garrahan P. J. Calcium ion-dependent phosphorylation of human erythrocyte membranes. J Membr Biol. 1975 Jul 24;22(3-4):313–327. doi: 10.1007/BF01868177. [DOI] [PubMed] [Google Scholar]
  22. Rega A. F., Garrahan P. J. Effects of calmodulin on the phosphoenzyme of the Ca2+-ATPase of human red cell membranes. Biochim Biophys Acta. 1980 Mar 13;596(3):487–489. doi: 10.1016/0005-2736(80)90140-6. [DOI] [PubMed] [Google Scholar]
  23. Rossi J. P., Garrahan P. J., Rega A. F. Reversal of the calcium pump in human red cells. J Membr Biol. 1978 Dec 8;44(1):37–46. doi: 10.1007/BF01940572. [DOI] [PubMed] [Google Scholar]
  24. Roufogalis B. D., Akyempon C. K., Al-Jobore A., Minocherhomjee A. M. Regulation of the Ca2+ pump of the erythrocyte membrane. Ann N Y Acad Sci. 1982;402:349–367. doi: 10.1111/j.1749-6632.1982.tb25754.x. [DOI] [PubMed] [Google Scholar]
  25. Sarkadi B. Active calcium transport in human red cells. Biochim Biophys Acta. 1980 Sep 30;604(2):159–190. doi: 10.1016/0005-2736(80)90573-8. [DOI] [PubMed] [Google Scholar]
  26. Schatzmann H. J., Bürgin H. Calcium in human red blood cells. Ann N Y Acad Sci. 1978 Apr 28;307:125–147. doi: 10.1111/j.1749-6632.1978.tb41939.x. [DOI] [PubMed] [Google Scholar]
  27. Schatzmann H. J. Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells. J Physiol. 1973 Dec;235(2):551–569. doi: 10.1113/jphysiol.1973.sp010403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Szász I., Hasitz M., Sarkadi B., Gárdos G. Phosphorylation of the Ca2+ pump intermediate in intact red cells, isolated membranes and inside-out vesicles. Mol Cell Biochem. 1978 Dec 22;22(2-3):147–152. doi: 10.1007/BF00496240. [DOI] [PubMed] [Google Scholar]
  29. Vincenzi F. F., Hinds T. R., Raess B. U. Calmodulin and the plasma membrane calcium pump. Ann N Y Acad Sci. 1980;356:232–244. doi: 10.1111/j.1749-6632.1980.tb29614.x. [DOI] [PubMed] [Google Scholar]
  30. Wüthrich A., Schatzmann H. J., Romero P. Net ATP synthesis by running the red cell calcium pump backwards. Experientia. 1979 Dec 15;35(12):1589–1590. doi: 10.1007/BF01953210. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES