Abstract
Magnetically induced birefringence was used to monitor fibrin polymerization after the release of the small negatively charged A fibrinopeptides from human fibrinogen by the action of the snake-venom-derived enzymes reptilase and ancrod. A range of conditions was investigated. Fibrin polymerization in solutions of purified fibrinogen shows a distinct break near the gelation point. On addition of Ca2+ or albumin the lag period is shortened, fibre thickness is increased and the break in assembly almost vanishes, probably because both of these additives promote lateral aggregation. There are minor differences in the kinetics, depending on the venom enzyme used. The kinetics of fibrin assembly in model systems containing either Ca2+ or albumin and in human plasma with a largely dormant coagulation cascade are very similar. Therefore in the latter condition there is no significant alteration in the assembly process due to interaction between fibrin or the venom enzymes and any of the plasma proteins. When the cascade is activated, the polymerization progress curves have a character that resembles a combination of the reactions observed when the venom enzymes and endogenously generated thrombin separately induce coagulation, except for a region near gelation where, paradoxically, polymerization appears to be slower on activation. The low-angle neutron-diffraction patterns from oriented gels made with thrombin or reptilase are identical. Therefore at low resolution the packing of the monomers within fibres is the same when fibrinopeptide A only or both fibrinopeptides A and B are removed.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Doolittle R. F. Fibrinogen and fibrin. Annu Rev Biochem. 1984;53:195–229. doi: 10.1146/annurev.bi.53.070184.001211. [DOI] [PubMed] [Google Scholar]
- Egberg N. On the metabolism of the thrombin-like enzyme from the venom of Bothrops atrox. Thromb Res. 1974 Jan;4(1):35–53. doi: 10.1016/0049-3848(74)90202-3. [DOI] [PubMed] [Google Scholar]
- Freyssinet J. M., Torbet J., Hudry-Clergeon G., Maret G. Fibrinogen and fibrin structure and fibrin formation measured by using magnetic orientation. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1616–1620. doi: 10.1073/pnas.80.6.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garman A. J., Smith R. A. The binding of plasminogen to fibrin: evidence for plasminogen-bridging. Thromb Res. 1982 Aug 1;27(3):311–320. doi: 10.1016/0049-3848(82)90078-0. [DOI] [PubMed] [Google Scholar]
- Greenberg C. S., Shuman M. A. The zymogen forms of blood coagulation factor XIII bind specifically to fibrinogen. J Biol Chem. 1982 Jun 10;257(11):6096–6101. [PubMed] [Google Scholar]
- Hantgan R. R., Hermans J. Assembly of fibrin. A light scattering study. J Biol Chem. 1979 Nov 25;254(22):11272–11281. [PubMed] [Google Scholar]
- Hantgan R., Fowler W., Erickson H., Hermans J. Fibrin assembly: a comparison of electron microscopic and light scattering results. Thromb Haemost. 1980 Dec 19;44(3):119–124. [PubMed] [Google Scholar]
- Hermans J., McDonagh J. Fibrin: structure and interactions. Semin Thromb Hemost. 1982 Jan;8(1):11–24. doi: 10.1055/s-2007-1005039. [DOI] [PubMed] [Google Scholar]
- Jackson C. M., Nemerson Y. Blood coagulation. Annu Rev Biochem. 1980;49:765–811. doi: 10.1146/annurev.bi.49.070180.004001. [DOI] [PubMed] [Google Scholar]
- Janus T. J., Lewis S. D., Lorand L., Shafer J. A. Promotion of thrombin-catalyzed activation of factor XIII by fibrinogen. Biochemistry. 1983 Dec 20;22(26):6269–6272. doi: 10.1021/bi00295a035. [DOI] [PubMed] [Google Scholar]
- KEKWICK R. A., MACKAY M. E., NANCE M. H., RECORD B. R. The purification of human fibrinogen. Biochem J. 1955 Aug;60(4):671–683. doi: 10.1042/bj0600671b. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas M. A., Fretto L. J., McKee P. A. The binding of human plasminogen to fibrin and fibrinogen. J Biol Chem. 1983 Apr 10;258(7):4249–4256. [PubMed] [Google Scholar]
- Maret G., Weill G. Magnetic birefringence study of the electrostatic and intrinsic persistence length of DNA. Biopolymers. 1983 Dec;22(12):2727–2744. doi: 10.1002/bip.360221215. [DOI] [PubMed] [Google Scholar]
- Minton A. P. The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem. 1983;55(2):119–140. doi: 10.1007/BF00673707. [DOI] [PubMed] [Google Scholar]
- Nemerson Y., Furie B. Zymogens and cofactors of blood coagulation. CRC Crit Rev Biochem. 1980;9(1):45–85. doi: 10.3109/10409238009105472. [DOI] [PubMed] [Google Scholar]
- Nolan C., Hall L. S., Barlow G. H. Ancrod, the coagulating enzyme from Malayan pit viper (Agkistrodon rhodostoma) venom. Methods Enzymol. 1976;45:205–213. doi: 10.1016/s0076-6879(76)45020-6. [DOI] [PubMed] [Google Scholar]
- Okada M., Blombäck B., Chang M. D., Horowitz B. Fibronectin and fibrin gel structure. J Biol Chem. 1985 Feb 10;260(3):1811–1820. [PubMed] [Google Scholar]
- Osterud B. Activation pathways of the coagulation system in normal haemostasis. Scand J Haematol. 1984 Apr;32(4):337–345. [PubMed] [Google Scholar]
- Pitney W. R., Regoeczi E. Inactivation of "Arvin" by plasma proteins. Br J Haematol. 1970 Jul;19(1):67–81. doi: 10.1111/j.1365-2141.1970.tb01602.x. [DOI] [PubMed] [Google Scholar]
- Pizzo S. V., Schwartz M. L., Hill R. L., McKee P. A. Mechanism of ancrod anticoagulation. A direct proteolytic effect on fibrin. J Clin Invest. 1972 Nov;51(11):2841–2850. doi: 10.1172/JCI107107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stocker K., Barlow G. H. The coagulant enzyme from Bothrops atrox venom (batroxobin). Methods Enzymol. 1976;45:214–223. doi: 10.1016/s0076-6879(76)45021-8. [DOI] [PubMed] [Google Scholar]
- Stocker K. Reptilase-test. Thromb Res. 1983 Sep 1;31(5):765–766. doi: 10.1016/0049-3848(83)90107-x. [DOI] [PubMed] [Google Scholar]
- Torbet J. Fibrin assembly in human plasma and fibrinogen/albumin mixtures. Biochemistry. 1986 Sep 9;25(18):5309–5314. doi: 10.1021/bi00366a048. [DOI] [PubMed] [Google Scholar]
- Torbet J., Freyssinet J. M., Hudry-Clergeon G. Oriented fibrin gels formed by polymerization in strong magnetic fields. Nature. 1981 Jan 1;289(5793):91–93. doi: 10.1038/289091a0. [DOI] [PubMed] [Google Scholar]
- Wilf J., Gladner J. A., Minton A. P. Acceleration of fibrin gel formation by unrelated proteins. Thromb Res. 1985 Mar 15;37(6):681–688. doi: 10.1016/0049-3848(85)90197-5. [DOI] [PubMed] [Google Scholar]
- Williams R. C. Band patterns seen by electron microscopy in ordered arrays of bovine and human fibrinogen and fibrin after negative staining. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1570–1573. doi: 10.1073/pnas.80.6.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
