Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Jul 1;245(1):167–173. doi: 10.1042/bj2450167

Studies on the metal-ion and lipoxygenase-catalysed breakdown of hydroperoxides using electron-spin-resonance spectroscopy.

M J Davies 1, T F Slater 1
PMCID: PMC1148096  PMID: 2822013

Abstract

The breakdown of cumene hydroperoxide and peroxidized fatty acids by iron is shown, by use of the spin trap 5,5-dimethyl-l-pyrroline-N-oxide, to be sensitive to (a) the oxidation state of the metal and (b) the nature of the chelating ligands. The initial step in the Fe2+-catalysed breakdown is the production of an alkoxyl radical by one-electron reduction, and this type of radical has been successfully trapped from each substrate. Subsequent reactions of this alkoxyl species produce both carbon-centred and peroxyl radicals, depending on the concentrations of the reagents present. The use of the same spin trap in microsomal systems undergoing either NADPH-supported or Fe2+-induced peroxidation led to the detection of low concentrations of radical adducts, among which are signals that are believed to be due to lipid alkoxyl radicals. Reaction of polyunsaturated fatty acid hydroperoxides with both Fe2+ and lipoxygenase under anaerobic conditions gives rise to signals not only from the alkoxy-radical adduct, but also from a further species which is tentatively identified as being due to an acyl [RC(O).]-radical adduct; chemical studies lend support to this assignment.

Full text

PDF
167

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albano E., Lott K. A., Slater T. F., Stier A., Symons M. C., Tomasi A. Spin-trapping studies on the free-radical products formed by metabolic activation of carbon tetrachloride in rat liver microsomal fractions isolated hepatocytes and in vivo in the rat. Biochem J. 1982 May 15;204(2):593–603. doi: 10.1042/bj2040593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Buettner G. R., Oberley L. W. Considerations in the spin trapping of superoxide and hydroxyl radical in aqueous systems using 5,5-dimethyl-1-pyrroline-1-oxide. Biochem Biophys Res Commun. 1978 Jul 14;83(1):69–74. doi: 10.1016/0006-291x(78)90398-4. [DOI] [PubMed] [Google Scholar]
  3. Butler J., Halliwell B. Reaction of iron-EDTA chelates with the superoxide radical. Arch Biochem Biophys. 1982 Oct 1;218(1):174–178. doi: 10.1016/0003-9861(82)90333-2. [DOI] [PubMed] [Google Scholar]
  4. Davies M. J., Slater T. F. Studies on the photolytic breakdown of hydroperoxides and peroxidized fatty acids by using electron spin resonance spectroscopy. Spin trapping of alkoxyl and peroxyl radicals in organic solvents. Biochem J. 1986 Dec 15;240(3):789–795. doi: 10.1042/bj2400789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dix T. A., Marnett L. J. Conversion of linoleic acid hydroperoxide to hydroxy, keto, epoxyhydroxy, and trihydroxy fatty acids by hematin. J Biol Chem. 1985 May 10;260(9):5351–5357. [PubMed] [Google Scholar]
  6. Finkelstein E., Rosen G. M., Rauckman E. J., Paxton J. Spin trapping of superoxide. Mol Pharmacol. 1979 Sep;16(2):676–685. [PubMed] [Google Scholar]
  7. Gardner H. W. Decomposition of linoleic acid hydroperoxides. Enzymic reactions compared with nonenzymic. J Agric Food Chem. 1975 Mar-Apr;23(2):129–136. doi: 10.1021/jf60198a012. [DOI] [PubMed] [Google Scholar]
  8. Gardner H. W., Jursinic P. A. Degradation of linoleic acid hydroperoxides by a cysteine . FeCl3 catalyst as a model for similar biochemical reactions. I. Study of oxygen requirement, catalyst and effect of pH. Biochim Biophys Acta. 1981 Jul 24;665(1):100–112. doi: 10.1016/0005-2760(81)90238-1. [DOI] [PubMed] [Google Scholar]
  9. Gutteridge J. M., Richmond R., Halliwell B. Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochem J. 1979 Nov 15;184(2):469–472. doi: 10.1042/bj1840469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Halliwell B., Gutteridge J. M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984 Apr 1;219(1):1–14. doi: 10.1042/bj2190001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hawco F. J., O'Brien P. J. Singlet oxygen formation during hemoprotein catalyzed lipid peroxide decomposition. Biochem Biophys Res Commun. 1976 May 23;76(2):354–361. doi: 10.1016/0006-291x(77)90732-x. [DOI] [PubMed] [Google Scholar]
  12. Hrycay E. G., O'Brien P. J. Cytochrome P-450 as a microsomal peroxidase utilizing a lipid peroxide substrate. Arch Biochem Biophys. 1971 Nov;147(1):14–27. doi: 10.1016/0003-9861(71)90304-3. [DOI] [PubMed] [Google Scholar]
  13. Kalyanaraman B., Mottley C., Mason R. P. A direct electron spin resonance and spin-trapping investigation of peroxyl free radical formation by hematin/hydroperoxide systems. J Biol Chem. 1983 Mar 25;258(6):3855–3858. [PubMed] [Google Scholar]
  14. Marnett L. J. Polycyclic aromatic hydrocarbon oxidation during prostaglandin biosynthesis. Life Sci. 1981 Aug 10;29(6):531–546. doi: 10.1016/0024-3205(81)90431-8. [DOI] [PubMed] [Google Scholar]
  15. O'Brien P. J. Intracellular mechanisms for the decomposition of a lipid peroxide. I. Decomposition of a lipid peroxide by metal ions, heme compounds, and nucleophiles. Can J Biochem. 1969 May;47(5):485–492. doi: 10.1139/o69-076. [DOI] [PubMed] [Google Scholar]
  16. Porter N. A. Chemistry of lipid peroxidation. Methods Enzymol. 1984;105:273–282. doi: 10.1016/s0076-6879(84)05035-7. [DOI] [PubMed] [Google Scholar]
  17. Pryor W. A. Free radical reactions and their importance in biochemical systems. Fed Proc. 1973 Aug;32(8):1862–1869. [PubMed] [Google Scholar]
  18. Schaich K. M. Free radical initiation in proteins and amino acids by ionizing and ultraviolet radiations and lipid oxidation--part III: free radical transfer from oxidizing lipids. Crit Rev Food Sci Nutr. 1980;13(3):189–244. doi: 10.1080/10408398009527290. [DOI] [PubMed] [Google Scholar]
  19. Slater T. F., Sawyer B. C. The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro. General features of the systems used. Biochem J. 1971 Aug;123(5):805–814. doi: 10.1042/bj1230805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Svingen B. A., Buege J. A., O'Neal F. O., Aust S. D. The mechanism of NADPH-dependent lipid peroxidation. The propagation of lipid peroxidation. J Biol Chem. 1979 Jul 10;254(13):5892–5899. [PubMed] [Google Scholar]
  21. TAPPEL A. L., BOYER P. D., LUNDBERG W. O. The reaction mechanism of soy bean lipoxidase. J Biol Chem. 1952 Nov;199(1):267–281. [PubMed] [Google Scholar]
  22. Wills E. D. Mechanisms of lipid peroxide formation in animal tissues. Biochem J. 1966 Jun;99(3):667–676. doi: 10.1042/bj0990667. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES