Abstract
The inhibition of carnitine palmitoyltransferase (CPT, EC 2.3.1.21) by malonyl-CoA, acetyl-CoA and free CoA was studied in sonicated skeletal-muscle homogenates from normal human subjects and from five patients with a mutant CPT [Zierz & Engel (1985) Eur. J. Biochem. 149, 207-214]. (1) Malonyl-CoA, acetyl-CoA and CoA were competitive inhibitors of CPT with palmitoyl-CoA. (2) Acetyl-CoA and CoA inhibited normal and mutant CPT to the same degree, whereas malonyl-CoA inhibited mutant CPT more than normal CPT. (3) Triton X-100 abolished the inhibition of normal CPT by malonyl-CoA, but not by acetyl-CoA or CoA. Triton X-100 by itself caused loss of activity of the mutant CPT. (4) In the concentration range 0.1-0.4 mM, the inhibitory effects of any two of the three inhibitors were synergistic. (5) The inhibitory constants (Ki) for acetyl-CoA and CoA were close to 45 microM. The Ki for malonyl-CoA was 200-fold lower, or 0.22 microM. Addition of 40 microM-acetyl-CoA or CoA resulted in a 3-fold increase in the Ki for acetyl-CoA. Addition of 20 microM-CoA resulted in a 3-fold increase in the Ki for acetyl-CoA. (6) The findings indicate that acetyl-CoA and CoA can inhibit CPT at the catalytic site or a nearby site which is different from that at which malonyl-CoA inhibits CPT. (7) The fact that small changes in the concentration of acetyl-CoA and CoA can antagonize the inhibitory effect of malonyl-CoA suggests that these compounds could modulate the inhibition of CPT by malonyl-CoA.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bird M. I., Munday L. A., Saggerson E. D., Clark J. B. Carnitine acyltransferase activities in rat brain mitochondria. Bimodal distribution, kinetic constants, regulation by malonyl-CoA and developmental pattern. Biochem J. 1985 Feb 15;226(1):323–330. doi: 10.1042/bj2260323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bird M. I., Saggerson E. D. Binding of malonyl-CoA to isolated mitochondria. Evidence for high- and low-affinity sites in liver and heart and relationship to inhibition of carnitine palmitoyltransferase activity. Biochem J. 1984 Sep 15;222(3):639–647. doi: 10.1042/bj2220639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bremer J. Carnitine--metabolism and functions. Physiol Rev. 1983 Oct;63(4):1420–1480. doi: 10.1152/physrev.1983.63.4.1420. [DOI] [PubMed] [Google Scholar]
- Bremer J., Woldegiorgis G., Schalinske K., Shrago E. Carnitine palmitoyltransferase. Activation by palmitoyl-CoA and inactivation by malonyl-CoA. Biochim Biophys Acta. 1985 Jan 9;833(1):9–16. doi: 10.1016/0005-2760(85)90247-4. [DOI] [PubMed] [Google Scholar]
- Carroll J. E., Villadiego A., Morse D. P. Fatty acid oxidation intermediates and the effect of fasting on oxidation in red and white skeletal muscle. Muscle Nerve. 1983 Jun;6(5):367–373. doi: 10.1002/mus.880060505. [DOI] [PubMed] [Google Scholar]
- Cook G. A. Differences in the sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA are due to differences in Ki values. J Biol Chem. 1984 Oct 10;259(19):12030–12033. [PubMed] [Google Scholar]
- DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edwards M. R., Bird M. I., Saggerson E. D. Effects of DL-2-bromopalmitoyl-CoA and bromoacetyl-CoA in rat liver and heart mitochondria. Inhibition of carnitine palmitoyltransferase and displacement of [14C]malonyl-CoA from mitochondrial binding sites. Biochem J. 1985 Aug 15;230(1):169–179. doi: 10.1042/bj2300169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodman M. N., Berger M., Ruderman N. B. Glucose metabolism in rat skeletal muscle at rest. Effect of starvation, diabetes, ketone bodies and free fatty acids. Diabetes. 1974 Nov;23(11):881–888. doi: 10.2337/diab.23.11.881. [DOI] [PubMed] [Google Scholar]
- Grantham B. D., Zammit V. A. Binding of [14C]malonyl-CoA to rat liver mitochondria after blocking of the active site of carnitine palmitoyltransferase I. Displacement of low-affinity binding by palmitoyl-CoA. Biochem J. 1986 Jan 15;233(2):589–593. doi: 10.1042/bj2330589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McCormick K., Notar-Francesco V. J., Sriwatanakul K. Inhibition by acetyl-CoA of hepatic carnitine acyltransferase and fatty acid oxidation. Biochem J. 1983 Nov 15;216(2):499–502. doi: 10.1042/bj2160499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395–420. doi: 10.1146/annurev.bi.49.070180.002143. [DOI] [PubMed] [Google Scholar]
- McGarry J. D., Leatherman G. F., Foster D. W. Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA. J Biol Chem. 1978 Jun 25;253(12):4128–4136. [PubMed] [Google Scholar]
- McGarry J. D., Mills S. E., Long C. S., Foster D. W. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J. 1983 Jul 15;214(1):21–28. doi: 10.1042/bj2140021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills S. E., Foster D. W., McGarry J. D. Effects of pH on the interaction of substrates and malonyl-CoA with mitochondrial carnitine palmitoyltransferase I. Biochem J. 1984 Apr 15;219(2):601–608. doi: 10.1042/bj2190601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills S. E., Foster D. W., McGarry J. D. Interaction of malonyl-CoA and related compounds with mitochondria from different rat tissues. Relationship between ligand binding and inhibition of carnitine palmitoyltransferase I. Biochem J. 1983 Jul 15;214(1):83–91. doi: 10.1042/bj2140083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norum K. R. Palmityl-CoA: carnitine palmityltransferase. Studies on the substrate specificity of the enzyme. Biochim Biophys Acta. 1965 Jun 22;99(3):511–522. doi: 10.1016/s0926-6593(65)80204-1. [DOI] [PubMed] [Google Scholar]
- Paulson D. J., Ward K. M., Shug A. L. Malonyl CoA inhibition of carnitine palmityltransferase in rat heart mitochondria. FEBS Lett. 1984 Oct 29;176(2):381–384. doi: 10.1016/0014-5793(84)81201-6. [DOI] [PubMed] [Google Scholar]
- Saggerson E. D., Carpenter C. A. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland, skeletal muscle and heart. FEBS Lett. 1981 Jul 6;129(2):229–232. doi: 10.1016/0014-5793(81)80171-8. [DOI] [PubMed] [Google Scholar]
- Saggerson E. D., Carpenter C. A. Effects of fasting and malonyl CoA on the kinetics of carnitine palmitoyltransferase and carnitine octanoyltransferase in intact rat liver mitochondria. FEBS Lett. 1981 Sep 28;132(2):166–168. doi: 10.1016/0014-5793(81)81152-0. [DOI] [PubMed] [Google Scholar]
- Saggerson E. D., Carpenter C. A. Malonyl CoA inhibition of carnitine acyltransferase activities: effects of thiol-group reagents. FEBS Lett. 1982 Jan 11;137(1):124–128. doi: 10.1016/0014-5793(82)80329-3. [DOI] [PubMed] [Google Scholar]
- Solberg H. E. Different carnitine acyltransferases in calf liver. Biochim Biophys Acta. 1972 Nov 30;280(3):422–433. doi: 10.1016/0005-2760(72)90248-2. [DOI] [PubMed] [Google Scholar]
- Zammit V. A., Corstorphine C. G., Gray S. R. Changes in the ability of malonyl-CoA to inhibit carnitine palmitoyltransferase I activity and to bind to rat liver mitochondria during incubation in vitro. Differences in binding at 0 degree C and 37 degrees C with a fixed concentration of malonyl-CoA. Biochem J. 1984 Sep 1;222(2):335–342. doi: 10.1042/bj2220335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zammit V. A. Reversible sensitization and desensitization of carnitine palmitoyltransferase I to inhibition by malonyl-CoA in isolated rat liver mitochondria. Significance for the mechanism of malonyl-CoA-induced sensitization. Biochem J. 1983 Sep 15;214(3):1027–1030. doi: 10.1042/bj2141027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zierz S., Engel A. G. Regulatory properties of a mutant carnitine palmitoyltransferase in human skeletal muscle. Eur J Biochem. 1985 May 15;149(1):207–214. doi: 10.1111/j.1432-1033.1985.tb08913.x. [DOI] [PubMed] [Google Scholar]
