Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Jul 15;245(2):455–462. doi: 10.1042/bj2450455

Surface areas of 1-palmitoyl phosphatidylcholines and their interactions with cholesterol.

R W Evans 1, M A Williams 1, J Tinoco 1
PMCID: PMC1148143  PMID: 3663172

Abstract

1-Palmitoyl phosphatidylcholines (1-palmitoyl PCs), in which the 2-position was occupied respectively by C10:0, C12:0, C14:0, C14:1, n-7, C16:0, C16:1, n-7, C18:0, C18:1(t), n-9, C18:1, n-9, C18:2, n-6, C18:3, N-3, C18:3, n-6, C18:3(5t,9,12), C22:0, C22:1, n-9, C22:2, n-6, C22:3, n-3, C22:4, n-6, C22:5, n-6 or C22:6, n-3 fatty acids, were studied as monolayer films at the air/water interface. Results for molecular area indicated that the areas of the PC (phosphatidylcholine) did not continuously decrease as the length of one chain increased. For series of saturated, monoenoic and dienoic 1-palmitoyl PCs the smallest molecular area was occupied by the PC containing a 20-carbon acid at the 2-position. In the 18-carbon series, introduction of the first and third cis double bonds caused a large increase in molecular area, but in the 22-carbon series the first and second cis double bonds produced large increases in molecular area. Molecules containing three or more cis double bonds varied little in molecular area, regardless of chain length (18-22 carbon atoms). The influence of a trans double bond was intermediate between that of a saturated and a cis double bond. The 18- and 22-carbon series of PCs were studied in mixed monolayers with cholesterol and desmosterol. Condensation of molecular areas occurred in all sterol PC mixed films, and similar results were obtained with cholesterol and desmosterol. Condensation of PC containing a cis or trans double bond within 10 carbon atoms of the carboxy group initially increased with increasing surface pressure. Condensation of other PCs decreased as surface pressure increased. All cis- or trans-unsaturated PCs condensed maximally in mixtures of approximately equimolar ratios with sterols, but saturated PCs condensed to the greatest extent in mixtures that contained about 30 mol% sterol.

Full text

PDF
455

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arvidson G. A. Structural and metabolic heterogeneity of rat liver glycerophosphatides. Eur J Biochem. 1968 May;4(4):478–486. doi: 10.1111/j.1432-1033.1968.tb00237.x. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Barton P. G., Gunstone F. D. Hydrocarbon chain packing and molecular motion in phospholipid bilayers formed from unsaturated lecithins. Synthesis and properties of sixteen positional isomers of 1,2-dioctadecenoyl-sn-glycero-3-phosphorylcholine. J Biol Chem. 1975 Jun 25;250(12):4470–4476. [PubMed] [Google Scholar]
  4. Bleau G., VandenHeuvel W. J. Desmosteryl sulfate and desmosterol in hamster epididymal spermatozoa. Steroids. 1974 Oct;24(4):549–556. doi: 10.1016/0039-128x(74)90135-4. [DOI] [PubMed] [Google Scholar]
  5. Bloch K. E. Sterol structure and membrane function. CRC Crit Rev Biochem. 1983;14(1):47–92. doi: 10.3109/10409238309102790. [DOI] [PubMed] [Google Scholar]
  6. Bridges R. B., Coniglio J. G. The biosynthesis of delta-9,12,15,18-tetracosatetraenoic and of delta-6,9,12,15,18-tetracosapentaenoic acids by rat testes. J Biol Chem. 1970 Jan 10;245(1):46–49. [PubMed] [Google Scholar]
  7. Coniglio J. G., Buch D., Grogan W. M. Effect of eicosa-5, 8, 11, 14-tetraynoic acid on fatty acid composition of selected organs in the rat. Lipids. 1976 Feb;11(2):143–147. doi: 10.1007/BF02532664. [DOI] [PubMed] [Google Scholar]
  8. Coolbear K. P., Berde C. B., Keough K. M. Gel to liquid-crystalline phase transitions of aqueous dispersions of polyunsaturated mixed-acid phosphatidylcholines. Biochemistry. 1983 Mar 15;22(6):1466–1473. doi: 10.1021/bi00275a022. [DOI] [PubMed] [Google Scholar]
  9. Demel R. A., De Kruyff B. The function of sterols in membranes. Biochim Biophys Acta. 1976 Oct 26;457(2):109–132. doi: 10.1016/0304-4157(76)90008-3. [DOI] [PubMed] [Google Scholar]
  10. Demiel R. A., Guerts van Kessel W. S., van Deenen L. L. The properties of polyunsaturated lecithins in monolayers and liposomes and the interactions of these lecithins with cholesterol. Biochim Biophys Acta. 1972 Apr 14;266(1):26–40. doi: 10.1016/0005-2736(72)90116-2. [DOI] [PubMed] [Google Scholar]
  11. Dennick R. G., Worthington K. J., Abramovich D. R., Dean P. D. Sterol content and squaline-2(3)-epoxide-lanosterol cyclase activity in human foetal brain during early and mid-gestation. J Neurochem. 1974 Jun;22(6):1019–1025. doi: 10.1111/j.1471-4159.1974.tb04331.x. [DOI] [PubMed] [Google Scholar]
  12. Elliott W. J., Morrison A. R., Sprecher H. W., Needleman P. The metabolic transformations of columbinic acid and the effect of topical application of the major metabolites on rat skin. J Biol Chem. 1985 Jan 25;260(2):987–992. [PubMed] [Google Scholar]
  13. Evans R. W., Tinoco J. Monolayers of sterols and phosphatidylcholines containing a 20-carbon chain. Chem Phys Lipids. 1978 Oct;22(3):207–220. doi: 10.1016/0009-3084(78)90027-0. [DOI] [PubMed] [Google Scholar]
  14. FUMAGALLI R., GROSSI E., POLETTI P., POLETTI R. STUDIES ON LIPIDS IN BRAIN TUMOURS--I. J Neurochem. 1964 Aug;11:561–565. doi: 10.1111/j.1471-4159.1964.tb11453.x. [DOI] [PubMed] [Google Scholar]
  15. Fiehn W., Seiler D., Kuhn E., Bartels D. Transport ATPases of cardiac sarcolemma in 20,25-diazacholesterol induced myopathy. Eur J Clin Invest. 1975 Jul 29;5(4):327–330. doi: 10.1111/j.1365-2362.1975.tb00461.x. [DOI] [PubMed] [Google Scholar]
  16. Ghosh D., Williams M. A., Tinoco J. The influence of lecithin structure on their monolayer behavior and interactions with cholesterol. Biochim Biophys Acta. 1973 Jan 26;291(2):351–362. doi: 10.1016/0005-2736(73)90488-4. [DOI] [PubMed] [Google Scholar]
  17. Houtsmuller U. M. Columbinic acid, a new type of essential fatty acid. Prog Lipid Res. 1981;20:889–896. doi: 10.1016/0163-7827(81)90166-1. [DOI] [PubMed] [Google Scholar]
  18. Houtsmuller U. M., van der Beek A. Effects of topical application of fatty acids. Prog Lipid Res. 1981;20:219–224. doi: 10.1016/0163-7827(81)90041-2. [DOI] [PubMed] [Google Scholar]
  19. Kuhn E., Dorow W., Kahkle W., Pfisterer H. Myotonie nach 20,25 Diazacholestern bei der Ratte. Elektromyographie, Mechanokardiographie, Fettsäurenanalyse der Phosphatide des Skeletmuskels. Klin Wochenschr. 1968 Oct 1;46(19):1043–1045. doi: 10.1007/BF01728545. [DOI] [PubMed] [Google Scholar]
  20. Lancée-Hermkens A. W., de Kruijff B. 13 C NMR measurements of unsonicated phosphatidylcholine bilayers of different fatty acid and sterol composition. Biochim Biophys Acta. 1977 Oct 17;470(2):141–151. doi: 10.1016/0005-2736(77)90095-5. [DOI] [PubMed] [Google Scholar]
  21. Lands W. E., Inoue M., Sugiura Y., Okuyama H. Selective incorporation of polyunsaturated fatty acids into phosphatidylcholine by rat liver microsomes. J Biol Chem. 1982 Dec 25;257(24):14968–14972. [PubMed] [Google Scholar]
  22. Lundquist M. Molecular arrangement in condensed monolayer phases. Prog Chem Fats Other Lipids. 1978;16:101–124. doi: 10.1016/0079-6832(78)90038-1. [DOI] [PubMed] [Google Scholar]
  23. Montfoort A., van Golde L. M., van Deenen L. L. Molecular species of lecithins from various animal tissues. Biochim Biophys Acta. 1971 Mar 16;231(2):335–342. doi: 10.1016/0005-2760(71)90147-0. [DOI] [PubMed] [Google Scholar]
  24. Moore C. E., Dhopeshwarkar G. A. Positional specificity of trans fatty acids in fetal lecithin. Lipids. 1981 Jul;16(7):479–484. doi: 10.1007/BF02535045. [DOI] [PubMed] [Google Scholar]
  25. Phillips M. C., Chapman D. Monolayer characteristics of saturated 1,2,-diacyl phosphatidylcholines (lecithins) and phosphatidylethanolamines at the air-water interface. Biochim Biophys Acta. 1968 Nov 5;163(3):301–313. doi: 10.1016/0005-2736(68)90115-6. [DOI] [PubMed] [Google Scholar]
  26. Proudlock J. W., Haslam J. M., Linnane A. W. Biogenesis of mitochondria. 19. The effects of unsaturated fatty acid depletion on the lipid composition and energy metabolism of a fatty acid desaturase mutant of Saccharomyces cerevisiae. J Bioenerg. 1971 Dec;2(5):327–349. doi: 10.1007/BF01963829. [DOI] [PubMed] [Google Scholar]
  27. Seiler D., Kuhn E. Experimentelle Myotonie durch 20.25-Diazacholesterin. Analyse der Phospholipide und Cholesterinester des sarkoplasmatischen Retikulum und des Sarkolemm. Z Klin Chem Klin Biochem. 1971 May;9(3):245–248. [PubMed] [Google Scholar]
  28. Silbert D. F. Genetic modification of membrane lipid. Annu Rev Biochem. 1975;44:315–339. doi: 10.1146/annurev.bi.44.070175.001531. [DOI] [PubMed] [Google Scholar]
  29. Stubbs C. D., Kouyama T., Kinosita K., Jr, Ikegami A. Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers. Biochemistry. 1981 Jul 21;20(15):4257–4262. doi: 10.1021/bi00518a004. [DOI] [PubMed] [Google Scholar]
  30. Tinoco J., Babcock R., Hincenbergs I., Medwadowski B., Miljanich P. Linolenic acid deficiency: changes in fatty acid patterns in female and male rats raised on a linolenic acid-deficient diet for two generations. Lipids. 1978 Jan;13(1):6–17. doi: 10.1007/BF02533360. [DOI] [PubMed] [Google Scholar]
  31. Tinoco J., Hopkins S. M., McIntosh D. J., Sheehan G., Lyman R. L. Fractionation and analysis of rat liver(14)CH (3)-lecithins labeled in vivo. Lipids. 1967 Nov;2(6):479–483. doi: 10.1007/BF02533175. [DOI] [PubMed] [Google Scholar]
  32. Weiner T. W., Sprecher H. Arachidonic acid, 5,8,11-eicosatrienoic acid and 5,8,11,14, 17-eicosapentaenoic acid. Dietary manipulation of the levels of these acids in rat liver and platelet phospholipids and their incorporation into human platelet lipids. Biochim Biophys Acta. 1984 Mar 7;792(3):293–303. doi: 10.1016/0005-2760(84)90196-6. [DOI] [PubMed] [Google Scholar]
  33. Yeagle P. L. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985 Dec 9;822(3-4):267–287. doi: 10.1016/0304-4157(85)90011-5. [DOI] [PubMed] [Google Scholar]
  34. de Kruijff B., Cullis P. R., Radda G. K. Differential scanning calorimetry and 31P NMR studies on sonicated and unsonicated phosphatidylcholine liposomes. Biochim Biophys Acta. 1975 Sep 16;406(1):6–20. doi: 10.1016/0005-2736(75)90038-3. [DOI] [PubMed] [Google Scholar]
  35. van DEENEN L., HOUTSMULLERUM, de HASS G., MULDER E. Monomolecular layers of synthetic phosphatides. J Pharm Pharmacol. 1962 Jul;14:429–444. doi: 10.1111/j.2042-7158.1962.tb11121.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES