Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Aug 15;246(1):19–23. doi: 10.1042/bj2460019

The use of monoclonal antibodies to distinguish several chemically modified forms of human alpha 1-proteinase inhibitor.

X J Zhu 1, S K Chan 1
PMCID: PMC1148235  PMID: 2445336

Abstract

The purpose of our investigation was to obtain monoclonal antibodies that could distinguish three forms of alpha 1-proteinase inhibitor (alpha 1-PI): native alpha 1-PI, N-chlorosuccinimide-oxidized alpha 1-PI (Ox-alpha 1-PI) and proteolytically modified alpha 1-PI (alpha 1-PI). Three specific monoclonal antibodies were characterized as to their binding properties. By using the Bio-Dot assay, it was found that all three forms of alpha 1-PI were capable of binding to antibody 6D4-6-18, that only Ox-alpha 1-PI, but not native alpha 1-PI or alpha 1-PI, could bind to antibody 6C7-5, and that alpha 1-PI and a complex between alpha 1-PI and trypsin uniquely were not able to bind to antibody 5C12-8-7. Thus it was concluded that it is possible to use monoclonal antibodies with different epitopic specificities to distinguish two chemically modified forms of alpha 1-PI from the native protein.

Full text

PDF
19

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud R. T., Fera T., Richter A., Tabona M. Z., Johal S. Acute effect of smoking on the functional activity of alpha1-protease inhibitor in bronchoalveolar lavage fluid. Am Rev Respir Dis. 1985 Jan;131(1):79–85. doi: 10.1164/arrd.1985.131.1.79. [DOI] [PubMed] [Google Scholar]
  2. Beatty K., Bieth J., Travis J. Kinetics of association of serine proteinases with native and oxidized alpha-1-proteinase inhibitor and alpha-1-antichymotrypsin. J Biol Chem. 1980 May 10;255(9):3931–3934. [PubMed] [Google Scholar]
  3. Burnett D., Stockley R. A. The electrophoretic mobility of alpha 1-antitrypsin in sputum and its relationship to protease inhibitory capacity, leucocyte elastase concentrations and acute respiratory infection. Hoppe Seylers Z Physiol Chem. 1980 May;361(5):781–789. doi: 10.1515/bchm2.1980.361.1.781. [DOI] [PubMed] [Google Scholar]
  4. Carp H., Miller F., Hoidal J. R., Janoff A. Potential mechanism of emphysema: alpha 1-proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitory capacity. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2041–2045. doi: 10.1073/pnas.79.6.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gadek J. E., Fells G. A., Crystal R. G. Cigarette smoking induces functional antiprotease deficiency in the lower respiratory tract of humans. Science. 1979 Dec 14;206(4424):1315–1316. doi: 10.1126/science.316188. [DOI] [PubMed] [Google Scholar]
  6. Goding J. W. Antibody production by hybridomas. J Immunol Methods. 1980;39(4):285–308. doi: 10.1016/0022-1759(80)90230-6. [DOI] [PubMed] [Google Scholar]
  7. Hawkes R., Niday E., Gordon J. A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem. 1982 Jan 1;119(1):142–147. doi: 10.1016/0003-2697(82)90677-7. [DOI] [PubMed] [Google Scholar]
  8. Janoff A., White R., Carp H., Harel S., Dearing R., Lee D. Lung injury induced by leukocytic proteases. Am J Pathol. 1979 Oct;97(1):111–136. [PMC free article] [PubMed] [Google Scholar]
  9. Johnson D., Travis J. Structural evidence for methionine at the reactive site of human alpha-1-proteinase inhibitor. J Biol Chem. 1978 Oct 25;253(20):7142–7144. [PubMed] [Google Scholar]
  10. Johnson D., Travis J. The oxidative inactivation of human alpha-1-proteinase inhibitor. Further evidence for methionine at the reactive center. J Biol Chem. 1979 May 25;254(10):4022–4026. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lellouch J., Claude J. R., Martin J. P., Orssaud G., Zaoui D., Bieth J. G. Smoking does not reduce the functional activity of serum alpha-1-proteinase inhibitor. An epidemiologic study of 719 healthy men. Am Rev Respir Dis. 1985 Oct;132(4):818–820. doi: 10.1164/arrd.1985.132.4.818. [DOI] [PubMed] [Google Scholar]
  13. Loebermann H., Tokuoka R., Deisenhofer J., Huber R. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol. 1984 Aug 15;177(3):531–557. [PubMed] [Google Scholar]
  14. Shochat D., Staples S., Hargrove K., Kozel J. S., Chan S. K. Primary structure of human alpha1-protease inhibitor. The complete amino acid sequence of cyanogen bromide fragment II. J Biol Chem. 1978 Aug 25;253(16):5630–5634. [PubMed] [Google Scholar]
  15. Stoclet J. C. L'AMP cyclique intervient-il dans l'effet bronchodilatateur de la théophylline? Bull Eur Physiopathol Respir. 1980 Jan-Feb;16(1):5–12. [PubMed] [Google Scholar]
  16. Stone P. J., Calore J. D., McGowan S. E., Bernardo J., Snider G. L., Franzblau C. Functional alpha 1-protease inhibitor in the lower respiratory tract of cigarette smokers is not decreased. Science. 1983 Sep 16;221(4616):1187–1189. doi: 10.1126/science.6612333. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES