Abstract
Bovine liver glutamate dehydrogenase is potently inhibited by Zn2+ ions. At pH 7.0 a kinetic dissociation constant for Zn2+ of 18 microM is obtained. The fluorescent lanthanide Eu3+ competes for the Zn2+-binding site and relieves the Zn2+-induced inhibition, but does not cause inhibition. Studies on the effects of Zn2+ or Eu3+ on the tertiary and quaternary structure of the enzyme by the use of protein fluorescence, heat-stability and re-activation after guanidinium chloride denaturation indicate that, whereas Zn2+ affects both tertiary and quaternary structure, Eu3+ does not affect either, consistent with its lack of effect on enzymic properties. Eu3+ fluorescence had a strong excitation peak at 395 nm with emission at 456 nm. In the presence of glutamate dehydrogenase the fluorescence emission is shifted to 501 nm. Eu3+, with high-affinity binding site and distinctive fluorescence properties after binding, would appear to be an ideal fluorophore for use in conformational studies or resonance-energy-transfer studies.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADELSTEIN S. J., VALLEE B. L. Zinc in beef liver glutamic dehydrogenase. J Biol Chem. 1958 Sep;233(3):589–593. [PubMed] [Google Scholar]
- Appella E., Tomkins G. M. The subunits of bovine liver glutamate dehydrogenase: demonstration of a single peptide chain. J Mol Biol. 1966 Jun;18(1):77–89. doi: 10.1016/s0022-2836(66)80078-5. [DOI] [PubMed] [Google Scholar]
- Bayley P. M., O'Neill K. T. The binding of oxidised coenzyme to bovine-liver glutamate dehydrogenase studied by circular-difference spectroscopy. Eur J Biochem. 1980 Dec;112(3):521–531. doi: 10.1111/j.1432-1033.1980.tb06115.x. [DOI] [PubMed] [Google Scholar]
- Bell E. T., Bell J. E. Catalytic activity of bovine glutamate dehydrogenase requires a hexamer structure. Biochem J. 1984 Jan 1;217(1):327–330. doi: 10.1042/bj2170327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell E. T., LiMuti C., Renz C. L., Bell J. E. Negative co-operativity in glutamate dehydrogenase. Involvement of the 2-position in glutamate in the induction of conformational changes. Biochem J. 1985 Jan 1;225(1):209–217. doi: 10.1042/bj2250209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bell J. E., Dalziel K. A conformational transition of the oligomer of glutamate dehydrogenase induced by half-saturation with NAD + or NADP + . Biochim Biophys Acta. 1973 May 5;309(1):237–242. doi: 10.1016/0005-2744(73)90336-7. [DOI] [PubMed] [Google Scholar]
- Cassman M., Schachman H. K. Sedimentation equilibrium studies on glutamic dehydrogenase. Biochemistry. 1971 Mar 16;10(6):1015–1024. doi: 10.1021/bi00782a013. [DOI] [PubMed] [Google Scholar]
- Chaplin A. E., Huggins A. K., Munday K. A. Ionic effects on glutamate dehydrogenase activity from beef liver, lobster muscle and crab muscle. Comp Biochem Physiol. 1965 Sep;16(1):49–62. doi: 10.1016/0010-406x(65)90163-5. [DOI] [PubMed] [Google Scholar]
- Colman R. F., Foster D. S. The absence of zinc in bovine liver glutamate dehydrogenase. J Biol Chem. 1970 Nov 25;245(22):6190–6195. [PubMed] [Google Scholar]
- Corman L., Kaplan N. O. Kinetic studies of dogfish liver glutamate dehydrogenase with diphosphopyridine nucleotide and the effect of added salts. J Biol Chem. 1967 Jun 25;242(12):2840–2846. [PubMed] [Google Scholar]
- Dalziel Keith, Engel Paul C. Antagonistic homotropic interactions as a possible explanation of coenzyme activation of glutamate dehydrogenase. FEBS Lett. 1968 Oct;1(5):349–352. doi: 10.1016/0014-5793(68)80153-x. [DOI] [PubMed] [Google Scholar]
- Egan R. R., Dalziel K. Active centre equivalent weight of glutamate dehydrogenase from dry weight determinations and spectrophotometric titrations of abortive complexes. Biochim Biophys Acta. 1971 Oct;250(1):47–50. doi: 10.1016/0005-2744(71)90118-5. [DOI] [PubMed] [Google Scholar]
- Engel P. C., Dalziel K. Kinetic studies of glutamate dehydrogenase with glutamate and norvaline as substrates. Coenzyme activation and negative homotropic interactions in allosteric enzymes. Biochem J. 1969 Dec;115(4):621–631. doi: 10.1042/bj1150621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRIEDEN C. GLUTAMATE DEHYDROGENASE. V. THE RELATION OF ENZYME STRUCTURE TO THE CATALYTIC FUNCTION. J Biol Chem. 1963 Oct;238:3286–3299. [PubMed] [Google Scholar]
- FRIEDEN C. Glutamic dehydrogenase. I. The effect of coenzyme on the sedimentation velocity and kinetic behavior. J Biol Chem. 1959 Apr;234(4):809–814. [PubMed] [Google Scholar]
- Frieden C. Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept. J Biol Chem. 1970 Nov 10;245(21):5788–5799. [PubMed] [Google Scholar]
- Jallon J. M., Iwatsubo M. Evidence for two nicotinamide binding sites on L-glutamate dehydrogenase. Biochem Biophys Res Commun. 1971 Nov;45(4):964–971. doi: 10.1016/0006-291x(71)90431-1. [DOI] [PubMed] [Google Scholar]
- Jung K., Sokolowski A., Egger E. Influence of Ca2 ions on the activity of human liver glutamate dehydrogenase. Hoppe Seylers Z Physiol Chem. 1973 Jan;354(1):101–103. [PubMed] [Google Scholar]
- LéJohn H. B. On the involvement of Ca2+ and Mn2+ in the regulation of mitochondrial glutamic dehydrogenase from Blastocladiella. Biochem Biophys Res Commun. 1968 Jul 26;32(2):278–283. doi: 10.1016/0006-291x(68)90381-1. [DOI] [PubMed] [Google Scholar]
- McCarthy A. D., Tipton K. F. The effects of magnesium ions on the interactions of ox brain and liver glutamate dehydrogenase with ATP and GTP. Biochem J. 1984 Jun 15;220(3):853–855. doi: 10.1042/bj2200853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moon K., Smith E. L. Sequence of bovine liver glutamate dehydrogenase. 8. Peptides produced by specific chemical cleavages; the complete sequence of the protein. J Biol Chem. 1973 May 10;248(9):3082–3088. [PubMed] [Google Scholar]
- OLSON J. A., ANFINSEN C. B. Kinetic and equilibrium studies on crystalline 1-glutamic acid dehydrogenase. J Biol Chem. 1953 Jun;202(2):841–856. [PubMed] [Google Scholar]
- Pantaloni D., Dessen P. Glutamate déshydrogénase. Fixations des coenzymes NAD et NADP et d'autres nucléotides dérivés de l'adénosine-5'-phosphate. Eur J Biochem. 1969 Dec;11(3):510–519. doi: 10.1111/j.1432-1033.1969.tb00803.x. [DOI] [PubMed] [Google Scholar]
- Pantaloni D., Lécuyer B. Glutamate déshydrogénase. Caractérisation et étude thermodynamique des différents complexes formés avec les coenzymes et substrats: rôle des effecteurs ADP et GT. Eur J Biochem. 1973 Dec 17;40(2):381–401. doi: 10.1111/j.1432-1033.1973.tb03208.x. [DOI] [PubMed] [Google Scholar]
- STEIN A. M., LEE J. K., ANDERSON C. D., ANDERSON B. M. THE THIONICOTINAMIDE ANALOGS OF DPN AND TPN. I. PREPARATION AND ANALYSIS. Biochemistry. 1963 Sep-Oct;2:1015–1017. doi: 10.1021/bi00905a018. [DOI] [PubMed] [Google Scholar]
- SUND H. FLUORESCENCE STUDIES OF ZINC BINDING TO BEEF LIVER GLUTAMATE DEHYDROGENASE. Acta Chem Scand. 1965;19:390–392. doi: 10.3891/acta.chem.scand.19-0390. [DOI] [PubMed] [Google Scholar]
- Smith T., Bell J. E. Mechanism of hysteresis in bovine glutamate dehydrogenase: role of subunit interactions. Biochemistry. 1982 Feb 16;21(4):733–737. doi: 10.1021/bi00533a023. [DOI] [PubMed] [Google Scholar]
- Stone S. R., Copeland L. The effect of anions on the reaction catalyzed by lupine-nodule glutamate dehydrogenase. Arch Biochem Biophys. 1982 Apr 1;214(2):550–559. doi: 10.1016/0003-9861(82)90059-5. [DOI] [PubMed] [Google Scholar]
