Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Aug 15;246(1):199–203. doi: 10.1042/bj2460199

Interaction of Zn2+ and Eu3+ with bovine liver glutamate dehydrogenase.

E T Bell 1, A M Stilwell 1, J E Bell 1
PMCID: PMC1148258  PMID: 3675555

Abstract

Bovine liver glutamate dehydrogenase is potently inhibited by Zn2+ ions. At pH 7.0 a kinetic dissociation constant for Zn2+ of 18 microM is obtained. The fluorescent lanthanide Eu3+ competes for the Zn2+-binding site and relieves the Zn2+-induced inhibition, but does not cause inhibition. Studies on the effects of Zn2+ or Eu3+ on the tertiary and quaternary structure of the enzyme by the use of protein fluorescence, heat-stability and re-activation after guanidinium chloride denaturation indicate that, whereas Zn2+ affects both tertiary and quaternary structure, Eu3+ does not affect either, consistent with its lack of effect on enzymic properties. Eu3+ fluorescence had a strong excitation peak at 395 nm with emission at 456 nm. In the presence of glutamate dehydrogenase the fluorescence emission is shifted to 501 nm. Eu3+, with high-affinity binding site and distinctive fluorescence properties after binding, would appear to be an ideal fluorophore for use in conformational studies or resonance-energy-transfer studies.

Full text

PDF
199

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADELSTEIN S. J., VALLEE B. L. Zinc in beef liver glutamic dehydrogenase. J Biol Chem. 1958 Sep;233(3):589–593. [PubMed] [Google Scholar]
  2. Appella E., Tomkins G. M. The subunits of bovine liver glutamate dehydrogenase: demonstration of a single peptide chain. J Mol Biol. 1966 Jun;18(1):77–89. doi: 10.1016/s0022-2836(66)80078-5. [DOI] [PubMed] [Google Scholar]
  3. Bayley P. M., O'Neill K. T. The binding of oxidised coenzyme to bovine-liver glutamate dehydrogenase studied by circular-difference spectroscopy. Eur J Biochem. 1980 Dec;112(3):521–531. doi: 10.1111/j.1432-1033.1980.tb06115.x. [DOI] [PubMed] [Google Scholar]
  4. Bell E. T., Bell J. E. Catalytic activity of bovine glutamate dehydrogenase requires a hexamer structure. Biochem J. 1984 Jan 1;217(1):327–330. doi: 10.1042/bj2170327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bell E. T., LiMuti C., Renz C. L., Bell J. E. Negative co-operativity in glutamate dehydrogenase. Involvement of the 2-position in glutamate in the induction of conformational changes. Biochem J. 1985 Jan 1;225(1):209–217. doi: 10.1042/bj2250209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bell J. E., Dalziel K. A conformational transition of the oligomer of glutamate dehydrogenase induced by half-saturation with NAD + or NADP + . Biochim Biophys Acta. 1973 May 5;309(1):237–242. doi: 10.1016/0005-2744(73)90336-7. [DOI] [PubMed] [Google Scholar]
  7. Cassman M., Schachman H. K. Sedimentation equilibrium studies on glutamic dehydrogenase. Biochemistry. 1971 Mar 16;10(6):1015–1024. doi: 10.1021/bi00782a013. [DOI] [PubMed] [Google Scholar]
  8. Chaplin A. E., Huggins A. K., Munday K. A. Ionic effects on glutamate dehydrogenase activity from beef liver, lobster muscle and crab muscle. Comp Biochem Physiol. 1965 Sep;16(1):49–62. doi: 10.1016/0010-406x(65)90163-5. [DOI] [PubMed] [Google Scholar]
  9. Colman R. F., Foster D. S. The absence of zinc in bovine liver glutamate dehydrogenase. J Biol Chem. 1970 Nov 25;245(22):6190–6195. [PubMed] [Google Scholar]
  10. Corman L., Kaplan N. O. Kinetic studies of dogfish liver glutamate dehydrogenase with diphosphopyridine nucleotide and the effect of added salts. J Biol Chem. 1967 Jun 25;242(12):2840–2846. [PubMed] [Google Scholar]
  11. Dalziel Keith, Engel Paul C. Antagonistic homotropic interactions as a possible explanation of coenzyme activation of glutamate dehydrogenase. FEBS Lett. 1968 Oct;1(5):349–352. doi: 10.1016/0014-5793(68)80153-x. [DOI] [PubMed] [Google Scholar]
  12. Egan R. R., Dalziel K. Active centre equivalent weight of glutamate dehydrogenase from dry weight determinations and spectrophotometric titrations of abortive complexes. Biochim Biophys Acta. 1971 Oct;250(1):47–50. doi: 10.1016/0005-2744(71)90118-5. [DOI] [PubMed] [Google Scholar]
  13. Engel P. C., Dalziel K. Kinetic studies of glutamate dehydrogenase with glutamate and norvaline as substrates. Coenzyme activation and negative homotropic interactions in allosteric enzymes. Biochem J. 1969 Dec;115(4):621–631. doi: 10.1042/bj1150621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. FRIEDEN C. GLUTAMATE DEHYDROGENASE. V. THE RELATION OF ENZYME STRUCTURE TO THE CATALYTIC FUNCTION. J Biol Chem. 1963 Oct;238:3286–3299. [PubMed] [Google Scholar]
  15. FRIEDEN C. Glutamic dehydrogenase. I. The effect of coenzyme on the sedimentation velocity and kinetic behavior. J Biol Chem. 1959 Apr;234(4):809–814. [PubMed] [Google Scholar]
  16. Frieden C. Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept. J Biol Chem. 1970 Nov 10;245(21):5788–5799. [PubMed] [Google Scholar]
  17. Jallon J. M., Iwatsubo M. Evidence for two nicotinamide binding sites on L-glutamate dehydrogenase. Biochem Biophys Res Commun. 1971 Nov;45(4):964–971. doi: 10.1016/0006-291x(71)90431-1. [DOI] [PubMed] [Google Scholar]
  18. Jung K., Sokolowski A., Egger E. Influence of Ca2 ions on the activity of human liver glutamate dehydrogenase. Hoppe Seylers Z Physiol Chem. 1973 Jan;354(1):101–103. [PubMed] [Google Scholar]
  19. LéJohn H. B. On the involvement of Ca2+ and Mn2+ in the regulation of mitochondrial glutamic dehydrogenase from Blastocladiella. Biochem Biophys Res Commun. 1968 Jul 26;32(2):278–283. doi: 10.1016/0006-291x(68)90381-1. [DOI] [PubMed] [Google Scholar]
  20. McCarthy A. D., Tipton K. F. The effects of magnesium ions on the interactions of ox brain and liver glutamate dehydrogenase with ATP and GTP. Biochem J. 1984 Jun 15;220(3):853–855. doi: 10.1042/bj2200853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Moon K., Smith E. L. Sequence of bovine liver glutamate dehydrogenase. 8. Peptides produced by specific chemical cleavages; the complete sequence of the protein. J Biol Chem. 1973 May 10;248(9):3082–3088. [PubMed] [Google Scholar]
  22. OLSON J. A., ANFINSEN C. B. Kinetic and equilibrium studies on crystalline 1-glutamic acid dehydrogenase. J Biol Chem. 1953 Jun;202(2):841–856. [PubMed] [Google Scholar]
  23. Pantaloni D., Dessen P. Glutamate déshydrogénase. Fixations des coenzymes NAD et NADP et d'autres nucléotides dérivés de l'adénosine-5'-phosphate. Eur J Biochem. 1969 Dec;11(3):510–519. doi: 10.1111/j.1432-1033.1969.tb00803.x. [DOI] [PubMed] [Google Scholar]
  24. Pantaloni D., Lécuyer B. Glutamate déshydrogénase. Caractérisation et étude thermodynamique des différents complexes formés avec les coenzymes et substrats: rôle des effecteurs ADP et GT. Eur J Biochem. 1973 Dec 17;40(2):381–401. doi: 10.1111/j.1432-1033.1973.tb03208.x. [DOI] [PubMed] [Google Scholar]
  25. STEIN A. M., LEE J. K., ANDERSON C. D., ANDERSON B. M. THE THIONICOTINAMIDE ANALOGS OF DPN AND TPN. I. PREPARATION AND ANALYSIS. Biochemistry. 1963 Sep-Oct;2:1015–1017. doi: 10.1021/bi00905a018. [DOI] [PubMed] [Google Scholar]
  26. SUND H. FLUORESCENCE STUDIES OF ZINC BINDING TO BEEF LIVER GLUTAMATE DEHYDROGENASE. Acta Chem Scand. 1965;19:390–392. doi: 10.3891/acta.chem.scand.19-0390. [DOI] [PubMed] [Google Scholar]
  27. Smith T., Bell J. E. Mechanism of hysteresis in bovine glutamate dehydrogenase: role of subunit interactions. Biochemistry. 1982 Feb 16;21(4):733–737. doi: 10.1021/bi00533a023. [DOI] [PubMed] [Google Scholar]
  28. Stone S. R., Copeland L. The effect of anions on the reaction catalyzed by lupine-nodule glutamate dehydrogenase. Arch Biochem Biophys. 1982 Apr 1;214(2):550–559. doi: 10.1016/0003-9861(82)90059-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES