Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Aug 15;246(1):205–211. doi: 10.1042/bj2460205

Purification of smooth-muscle myosin free of calmodulin and myosin light-chain kinase. Susceptibility to oxidation.

P K Ngai 1, M P Walsh 1
PMCID: PMC1148259  PMID: 2960320

Abstract

Smooth-muscle myosin purified as described by Persechini & Hartshorne [(1983) Biochemistry 22, 470-476] contains trace amounts of calmodulin and myosin light-chain kinase, which can be removed by Ca2+-dependent hydrophobic-interaction chromatography followed by calmodulin-Sepharose affinity chromatography. The resultant column-purified myosin exhibits properties similar to those of the non-purified myosin, e.g. actin activation of the Mg2+-ATPase requires Ca2+/calmodulin-dependent phosphorylation of the two 20 kDa light chains. However, unlike the non-purified myosin, the column-purified myosin undergoes a time-dependent transition to a form which no longer requires phosphorylation for actin activation of the myosin Mg2+-ATPase. This transition is identified as a time-dependent change in conformation of the column-purified myosin from a 10 S to 6 S form and is caused by slow oxidation of the column-purified myosin, since it could be prevented by storage under N2 and reversed by 5 mM-dithiothreitol.

Full text

PDF
205

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
  2. Bretscher A. Smooth muscle caldesmon. Rapid purification and F-actin cross-linking properties. J Biol Chem. 1984 Oct 25;259(20):12873–12880. [PubMed] [Google Scholar]
  3. Chacko S., Conti M. A., Adelstein R. S. Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc Natl Acad Sci U S A. 1977 Jan;74(1):129–133. doi: 10.1073/pnas.74.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chandra T. S., Nath N., Suzuki H., Seidel J. C. Modification of thiols of gizzard myosin alters ATPase activity, stability of myosin filaments, and the 6-10 S conformational transition. J Biol Chem. 1985 Jan 10;260(1):202–207. [PubMed] [Google Scholar]
  5. Clark T., Ngai P. K., Sutherland C., Gröschel-Stewart U., Walsh M. P. Vascular smooth muscle caldesmon. J Biol Chem. 1986 Jun 15;261(17):8028–8035. [PubMed] [Google Scholar]
  6. Craig R., Smith R., Kendrick-Jones J. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. 1983 Mar 31-Apr 6Nature. 302(5907):436–439. doi: 10.1038/302436a0. [DOI] [PubMed] [Google Scholar]
  7. Gopalakrishna R., Anderson W. B. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1982 Jan 29;104(2):830–836. doi: 10.1016/0006-291x(82)90712-4. [DOI] [PubMed] [Google Scholar]
  8. Ikebe M., Barsotti R. J., Hinkins S., Hartshorne D. J. Effects of magnesium chloride on smooth muscle actomyosin adenosine-5'-triphosphatase activity, myosin conformation, and tension development in glycerinated smooth muscle fibers. Biochemistry. 1984 Oct 9;23(21):5062–5068. doi: 10.1021/bi00316a036. [DOI] [PubMed] [Google Scholar]
  9. Ikebe M., Hartshorne D. J. Conformation-dependent proteolysis of smooth-muscle myosin. J Biol Chem. 1984 Oct 10;259(19):11639–11642. [PubMed] [Google Scholar]
  10. Ikebe M., Hartshorne D. J. Proteolysis of smooth muscle myosin by Staphylococcus aureus protease: preparation of heavy meromyosin and subfragment 1 with intact 20 000-dalton light chains. Biochemistry. 1985 Apr 23;24(9):2380–2387. doi: 10.1021/bi00330a038. [DOI] [PubMed] [Google Scholar]
  11. Ikebe M., Hinkins S., Hartshorne D. J. Correlation of enzymatic properties and conformation of smooth muscle myosin. Biochemistry. 1983 Sep 13;22(19):4580–4587. doi: 10.1021/bi00288a036. [DOI] [PubMed] [Google Scholar]
  12. Ikebe M., Hinkins S., Hartshorne D. J. Correlation of intrinsic fluorescence and conformation of smooth muscle myosin. J Biol Chem. 1983 Dec 25;258(24):14770–14773. [PubMed] [Google Scholar]
  13. Klee C. B. Conformational transition accompanying the binding of Ca2+ to the protein activator of 3',5'-cyclic adenosine monophosphate phosphodiesterase. Biochemistry. 1977 Mar 8;16(5):1017–1024. doi: 10.1021/bi00624a033. [DOI] [PubMed] [Google Scholar]
  14. Ngai P. K., Carruthers C. A., Walsh M. P. Isolation of the native form of chicken gizzard myosin light-chain kinase. Biochem J. 1984 Mar 15;218(3):863–870. doi: 10.1042/bj2180863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ngai P. K., Walsh M. P. Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon. J Biol Chem. 1984 Nov 25;259(22):13656–13659. [PubMed] [Google Scholar]
  16. Okamoto Y., Sekine T. Effects of tryptic digestion on the enzymatic activites of chicken gizzard myosin. J Biochem. 1978 May;83(5):1375–1379. doi: 10.1093/oxfordjournals.jbchem.a132046. [DOI] [PubMed] [Google Scholar]
  17. Onishi H. N-Iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine modification of myosin from chicken gizzard. J Biochem. 1985 Jul;98(1):81–86. doi: 10.1093/oxfordjournals.jbchem.a135276. [DOI] [PubMed] [Google Scholar]
  18. Onishi H., Watanabe S. Correlation between the papain digestibility and the conformation of 10s-myosin from chicken gizzard. J Biochem. 1984 Mar;95(3):899–902. doi: 10.1093/oxfordjournals.jbchem.a134685. [DOI] [PubMed] [Google Scholar]
  19. Persechini A., Hartshorne D. J. Ordered phosphorylation of the two 20 000 molecular weight light chains of smooth muscle myosin. Biochemistry. 1983 Jan 18;22(2):470–476. doi: 10.1021/bi00271a033. [DOI] [PubMed] [Google Scholar]
  20. Seidel J. C. Activation by actin of ATPase activity of chemically modified gizzard myosin without phosphorylation. Biochem Biophys Res Commun. 1979 Aug 13;89(3):958–964. doi: 10.1016/0006-291x(79)91871-0. [DOI] [PubMed] [Google Scholar]
  21. Sobieszek A. Phosphorylation reaction of vertebrate smooth muscle myosin: an enzyme kinetic analysis. Biochemistry. 1985 Feb 26;24(5):1266–1274. doi: 10.1021/bi00326a032. [DOI] [PubMed] [Google Scholar]
  22. Somlyo A. V., Butler T. M., Bond M., Somlyo A. P. Myosin filaments have non-phosphorylated light chains in relaxed smooth muscle. Nature. 1981 Dec 10;294(5841):567–569. doi: 10.1038/294567a0. [DOI] [PubMed] [Google Scholar]
  23. Sparrow M. P., Maxwell L. C., Ruegg J. C., Bohr D. F. Preparation and properties of a calcium ion-sensitive actomyosin from arteries. Am J Physiol. 1970 Nov;219(5):1366–1372. doi: 10.1152/ajplegacy.1970.219.5.1366. [DOI] [PubMed] [Google Scholar]
  24. Spector T. Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem. 1978 May;86(1):142–146. doi: 10.1016/0003-2697(78)90327-5. [DOI] [PubMed] [Google Scholar]
  25. Srivastava S., Ikebe M., Hartshorne D. J. Trinitrophenylation of smooth muscle myosin. Biochem Biophys Res Commun. 1985 Jan 31;126(2):748–755. doi: 10.1016/0006-291x(85)90248-7. [DOI] [PubMed] [Google Scholar]
  26. Suzuki H., Kamata T., Onishi H., Watanabe S. Adenosine triphosphate-induced reversible change in the conformation of chicken gizzard myosin and heavy meromyosin. J Biochem. 1982 May;91(5):1699–1705. doi: 10.1093/oxfordjournals.jbchem.a133861. [DOI] [PubMed] [Google Scholar]
  27. Suzuki H., Onishi H., Takahashi K., Watanabe S. Structure and function of chicken gizzard myosin. J Biochem. 1978 Dec;84(6):1529–1542. doi: 10.1093/oxfordjournals.jbchem.a132278. [DOI] [PubMed] [Google Scholar]
  28. Trybus K. M., Huiatt T. W., Lowey S. A bent monomeric conformation of myosin from smooth muscle. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6151–6155. doi: 10.1073/pnas.79.20.6151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Walsh M. P., Hinkins S., Dabrowska R., Hartshorne D. J. Smooth muscle myosin light chain kinase. Methods Enzymol. 1983;99:279–288. doi: 10.1016/0076-6879(83)99063-8. [DOI] [PubMed] [Google Scholar]
  30. Walsh M. P., Hinkins S., Flink I. L., Hartshorne D. J. Bovine stomach myosin light chain kinase: purification, characterization, and comparison with the turkey gizzard enzyme. Biochemistry. 1982 Dec 21;21(26):6890–6896. doi: 10.1021/bi00269a041. [DOI] [PubMed] [Google Scholar]
  31. Walsh M. P., Valentine K. A., Ngai P. K., Carruthers C. A., Hollenberg M. D. Ca2+-dependent hydrophobic-interaction chromatography. Isolation of a novel Ca2+-binding protein and protein kinase C from bovine brain. Biochem J. 1984 Nov 15;224(1):117–127. doi: 10.1042/bj2240117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zot H. G., Potter J. D. Purification of actin from cardiac muscle. Prep Biochem. 1981;11(4):381–395. doi: 10.1080/00327488108065530. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES