Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1987 Sep 15;246(3):697–703. doi: 10.1042/bj2460697

Developmental regulation of rat lung Cu,Zn-superoxide dismutase.

M A Hass 1, D Massaro 1
PMCID: PMC1148334  PMID: 2825647

Abstract

In the present investigation we found that lung Cu,Zn-superoxide dismutase (SOD) activity (units/mg of DNA) increases steadily in the rat from birth to adulthood. The specific activity (units/micrograms of enzyme) of Cu,Zn-SOD was unchanged from birth to adulthood, excluding enzyme activation as a mechanism responsible for the increase in enzyme activity. Lung synthesis of Cu,Zn-SOD peaked at 1 day before birth and decreased thereafter to adult values. Calculations, based on rates of Cu,Zn-SOD synthesis and the tissue content of the enzyme, indicated that lung Cu,Zn-SOD activity increased during development owing to the rate of enzyme synthesis exceeding its rate of degradation by 5-10%. These calculations were supported by measurements of enzyme degradation in the neonatal (half-life, t1/2, = 12 h) and adult lung (t1/2 = greater than 100 h); the difference in half-life did not reflect the rates of overall protein degradation in the lung, since these rates were not different in lungs from neonatal and adult rats. We did not detect differences in the Mr or pI of Cu,Zn-SOD during development, but the susceptibility of the enzyme to inactivation by heat or copper chelation decreased with increasing age of the rats. We conclude that the progressive increase in activity of Cu,Zn-SOD is due to a rate of synthesis that exceeds degradation of the enzyme. The data also suggest that increased stabilization of enzyme conformation accounts for the greater half-life of the enzyme in lungs of adult compared with neonatal rats.

Full text

PDF
697

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmair A., Finley D., Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science. 1986 Oct 10;234(4773):179–186. doi: 10.1126/science.3018930. [DOI] [PubMed] [Google Scholar]
  2. Beauchamp C., Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem. 1971 Nov;44(1):276–287. doi: 10.1016/0003-2697(71)90370-8. [DOI] [PubMed] [Google Scholar]
  3. Chiang M. J., Whitney P., Jr, Massaro D. Protein metabolism in lung: use of isolated perfused lung to study protein degradation. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jul;47(1):72–78. doi: 10.1152/jappl.1979.47.1.72. [DOI] [PubMed] [Google Scholar]
  4. Clerch L. B., Whitney P. L., Massaro D. Rat lung lectin synthesis, degradation and activation. Developmental regulation and modulation by dexamethasone. Biochem J. 1987 Aug 1;245(3):683–690. doi: 10.1042/bj2450683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crapo J. D., McCord J. M. Oxygen-induced changes in pulmonary superoxide dismutase assayed by antibody titrations. Am J Physiol. 1976 Oct;231(4):1196–1203. doi: 10.1152/ajplegacy.1976.231.4.1196. [DOI] [PubMed] [Google Scholar]
  6. Fan D., Parker P., Massaro D. Protein synthesis by attached pulmonary macrophages. Effect of phagocytosis. Biochim Biophys Acta. 1982 Nov 30;699(2):98–109. doi: 10.1016/0167-4781(82)90143-9. [DOI] [PubMed] [Google Scholar]
  7. Fisher A. B., Forman H. J., Glass M. Mechanisms of pulmonary oxygen toxicity. Lung. 1984;162(5):255–259. doi: 10.1007/BF02715655. [DOI] [PubMed] [Google Scholar]
  8. Frank L., Bucher J. R., Roberts R. J. Oxygen toxicity in neonatal and adult animals of various species. J Appl Physiol Respir Environ Exerc Physiol. 1978 Nov;45(5):699–704. doi: 10.1152/jappl.1978.45.5.699. [DOI] [PubMed] [Google Scholar]
  9. Frank L. Effects of oxygen on the newborn. Fed Proc. 1985 Apr;44(7):2328–2334. [PubMed] [Google Scholar]
  10. Frank L., Lewis P. L., Sosenko I. R. Dexamethasone stimulation of fetal rat lung antioxidant enzyme activity in parallel with surfactant stimulation. Pediatrics. 1985 Mar;75(3):569–574. [PubMed] [Google Scholar]
  11. Frank L., Wood D. L., Roberts R. J. Effect of diethyldithiocarbamate on oxygen toxicity and lung enzyme activity in immature and adult rats. Biochem Pharmacol. 1978 Jan 15;27(2):251–254. doi: 10.1016/0006-2952(78)90311-8. [DOI] [PubMed] [Google Scholar]
  12. Gerdin E., Tydén O., Eriksson U. J. The development of antioxidant enzymatic defense in the perinatal rat lung: activities of superoxide dismutase, glutathione peroxidase, and catalase. Pediatr Res. 1985 Jul;19(7):687–691. doi: 10.1203/00006450-198507000-00010. [DOI] [PubMed] [Google Scholar]
  13. Girard J. R., Guillet I., Marty J., Marliss E. B. Plasma amino acid levels and development of hepatic gluconeogenesis in the newborn rat. Am J Physiol. 1975 Aug;229(2):466–473. doi: 10.1152/ajplegacy.1975.229.2.466. [DOI] [PubMed] [Google Scholar]
  14. Gregory E. M., Fridovich I. Oxygen toxicity and the superoxide dismutase. J Bacteriol. 1973 Jun;114(3):1193–1197. doi: 10.1128/jb.114.3.1193-1197.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gregory E. M., Goscin S. A., Fridovich I. Superoxide dismutase and oxygen toxicity in a eukaryote. J Bacteriol. 1974 Feb;117(2):456–460. doi: 10.1128/jb.117.2.456-460.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hass M. A., Frank L., Massaro D. The effect of bacterial endotoxin on synthesis of (Cu,Zn)superoxide dismutase in lungs of oxygen-exposed rats. J Biol Chem. 1982 Aug 25;257(16):9379–9383. [PubMed] [Google Scholar]
  17. Hoffman M., Stevens J. B., Autor A. P. Adaptation to hyperoxia in the neonatal rat: kinetic parameters of the oxygen-mediated induction of lung superoxide dismutases, catalase and glutathione peroxidase. Toxicology. 1980;16(3):215–225. doi: 10.1016/0300-483x(80)90118-3. [DOI] [PubMed] [Google Scholar]
  18. Kellogg E. W., 3rd, Fridovich I. Liposome oxidation and erythrocyte lysis by enzymically generated superoxide and hydrogen peroxide. J Biol Chem. 1977 Oct 10;252(19):6721–6728. [PubMed] [Google Scholar]
  19. Kikkawa Y., Kaibara M., Motoyama E. K., Orzalesi M. M., Cook C. D. Morphologic development of fetal rabbit lung and its acceleration with cortisol. Am J Pathol. 1971 Aug;64(2):423–442. [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Massaro G. D., Clerch L., Massaro D. Perinatal anatomic development of alveolar type II cells in rats. Am J Physiol. 1986 Sep;251(3 Pt 2):R470–R475. doi: 10.1152/ajpregu.1986.251.3.R470. [DOI] [PubMed] [Google Scholar]
  22. Massaro G. D., Massaro D. Development of bronchiolar epithelium in rats. Am J Physiol. 1986 May;250(5 Pt 2):R783–R788. doi: 10.1152/ajpregu.1986.250.5.R783. [DOI] [PubMed] [Google Scholar]
  23. McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
  24. Morgan H. E., Earl D. C., Broadus A., Wolpert E. B., Giger K. E., Jefferson L. S. Regulation of protein synthesis in heart muscle. I. Effect of amino acid levels on protein synthesis. J Biol Chem. 1971 Apr 10;246(7):2152–2162. [PubMed] [Google Scholar]
  25. Ove P., Obenrader M., Lansing A. Synthesis and degradation of liver proteins in young and old rats. Biochim Biophys Acta. 1972 Aug 16;277(1):211–221. doi: 10.1016/0005-2787(72)90367-x. [DOI] [PubMed] [Google Scholar]
  26. Preedy V. R., McNurlan M. A., Garlick P. J. Protein synthesis in skin and bone of the young rat. Br J Nutr. 1983 May;49(3):517–523. doi: 10.1079/bjn19830060. [DOI] [PubMed] [Google Scholar]
  27. Randhawa P. S., Hass M. A., Frank L., Massaro D. PO2-dexamethasone interactions in fibroblast growth and antioxidant enzyme activity. Am J Physiol. 1987 Apr;252(4 Pt 1):C396–C400. doi: 10.1152/ajpcell.1987.252.4.C396. [DOI] [PubMed] [Google Scholar]
  28. Randhawa P., Hass M., Frank L., Massaro D. Dexamethasone increases superoxide dismutase activity in serum-free rat fetal lung organ cultures. Pediatr Res. 1986 Sep;20(9):895–898. doi: 10.1203/00006450-198609000-00018. [DOI] [PubMed] [Google Scholar]
  29. Reiss U., Gershon D. Rat-liver superoxide dismutase. Purification and age-related modifications. Eur J Biochem. 1976 Apr 1;63(2):617–623. doi: 10.1111/j.1432-1033.1976.tb10266.x. [DOI] [PubMed] [Google Scholar]
  30. Rothstein M. Recent developments in the age-related alteration of enzymes: a review. Mech Ageing Dev. 1977 Jul-Aug;6(4):241–257. doi: 10.1016/0047-6374(77)90025-2. [DOI] [PubMed] [Google Scholar]
  31. Tanswell A. K., Freeman B. A. Pulmonary antioxidant enzyme maturation in the fetal and neonatal rat. I. Developmental profiles. Pediatr Res. 1984 Jul;18(7):584–587. doi: 10.1203/00006450-198407000-00003. [DOI] [PubMed] [Google Scholar]
  32. Watkins C. A., Rannels D. E. Measurement of protein synthesis in rat lungs perfused in situ. Biochem J. 1980 Apr 15;188(1):269–278. doi: 10.1042/bj1880269. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES