Abstract
In order to assess metabolic recycling of sialic acid, GM1 ganglioside [nomenclature of Svennerholm (1964) J. Lipid. Res. 5, 145-155; IUPAC-IUB Recommendations (1977) Lipids 12, 455-468], 14C-radiolabelled at the acetyl group of sialic acid, was intravenously injected into Wistar rats, and the presence of radioactive sialic acid in liver sialoglycolipids (gangliosides) and sialoglycoproteins was ascertained. A time-course study (20 min-72 h) showed that the radioactivity present in the liver distributed in the following fractions, with reciprocal proportion varying with time: the protein (glycoprotein) fraction, the ganglioside fraction and the diffusible fraction, which contained low-Mr compounds, including sialic acid. Ganglioside-linked radioactivity gradually decreased with time; protein-linked radioactivity appeared soon after injection (20 min), reached a maximum around 20 h, then slowly diminished; diffusible radioactivity provided a sharp peak at 4 h, then rapidly decreased till disappearing after 40 h. The behaviour of bound radioactivity in the individual liver gangliosides was as follows: (a) rapid diminution with time in GM1, although with a lower rate at the longer times after injection; (b) early appearance (20 min) with a peak at 1 h, followed by continuous diminution, in GM2; (c) early appearance (20 min), peak at 1 h, diminution till 4 h, followed by a plateau, in GM3; (d) appearance at 60 min, maximum around 40 h and slow diminution thereafter, in GD1a, GD1b and GT1b. A detailed study, accomplished at 40 h after injection, demonstrated that almost all radioactivity present in the protein fraction was released by mild acid treatment and recovered in purified sialic acid; most of radioactive glycoprotein-bound sialic acid was releasable by sialidase action. In addition, the radioactivity present in the different gangliosides was exclusively carried by sialic acid and present in both sialidase-resistant and sialidase-labile residues. Only in the case of GD1a was the specific radioactivity of sialidase-resistant sialic acid superior to that of sialidase-releasable sialic acid. The results obtained lead to the following conclusions: (a) radioactive GM3 and GM2 were produced by degradation of GM1 taken up; GM3 originated partly by a process of neosynthesis; (b) radioactive GM1 consisted in part of residual exogenous GM1 and in part of a neosynthetized product; (c) radioactive GD1a originated in part by direct sialylation of GM1 taken up and in part by a neosynthetic process; (d) radioactive GD1b and GT1b resulted only from neosynthesis.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aula P., Autio S., Raivio K. O., Rapola J., Thodén C. J., Koskela S. L., Yamashina I. "Salla disease": a new lysosomal storage disorder. Arch Neurol. 1979 Feb;36(2):88–94. doi: 10.1001/archneur.1979.00500380058006. [DOI] [PubMed] [Google Scholar]
- Carey D. J., Hirschberg C. B. Metabolism of N-acetylneuraminic acid in mammals: isolation and characterization of CMP-N-acetylneuraminic acid. Biochemistry. 1979 May 15;18(10):2086–2092. doi: 10.1021/bi00577a038. [DOI] [PubMed] [Google Scholar]
- Ferwerda W., Blok C. M., Heijlman J. Turnover of free sialic acid, CMP-sialic acid, and bound sialic acid in rat brain. J Neurochem. 1981 Apr;36(4):1492–1499. doi: 10.1111/j.1471-4159.1981.tb00591.x. [DOI] [PubMed] [Google Scholar]
- Ferwerda W., Blok C. M., Van Rinsum J. Synthesis of N-acetylneuraminic acid and of CMP-N-acetylneuraminic acid in the rat liver cell. Biochem J. 1983 Oct 15;216(1):87–92. doi: 10.1042/bj2160087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gahl W. A., Tietze F., Bashan N., Steinherz R., Schulman J. D. Defective cystine exodus from isolated lysosome-rich fractions of cystinotic leucocytes. J Biol Chem. 1982 Aug 25;257(16):9570–9575. [PubMed] [Google Scholar]
- Ghidoni R., Sonnino S., Chigorno V., Venerando B., Tettamanti G. Occurrence of glycosylation and deglycosylation of exogenously administered ganglioside GM1 in mouse liver. Biochem J. 1983 Aug 1;213(2):321–329. doi: 10.1042/bj2130321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghidoni R., Sonnino S., Tettamanti G., Baumann N., Reuter G., Schauer R. Isolation and characterization of a trisialoganglioside from mouse brain, containing 9-O-acetyl-N-acetylneuraminic acid. J Biol Chem. 1980 Jul 25;255(14):6990–6995. [PubMed] [Google Scholar]
- Ghidoni R., Trinchera M., Venerando B., Fiorilli A., Sonnino S., Tettamanti G. Incorporation and metabolism of exogenous GM1 ganglioside in rat liver. Biochem J. 1986 Jul 1;237(1):147–155. doi: 10.1042/bj2370147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildreth J., 4th, Sacks L., Hancock L. W. N-acetylneuraminic acid accumulation in a buoyant lysosomal fraction of cultured fibroblasts from patients with infantile generalized N-acetylneuraminic acid storage disease. Biochem Biophys Res Commun. 1986 Sep 14;139(2):838–844. doi: 10.1016/s0006-291x(86)80066-3. [DOI] [PubMed] [Google Scholar]
- Jonas A. J. Studies of lysosomal sialic acid metabolism: retention of sialic acid by Salla disease lysosomes. Biochem Biophys Res Commun. 1986 May 29;137(1):175–181. doi: 10.1016/0006-291x(86)91192-7. [DOI] [PubMed] [Google Scholar]
- Mancini G. M., Hoogeveen A. T., Galjaard H., Mansson J. E., Svennerholm L. Ganglioside GM1 metabolism in living human fibroblasts with beta-galactosidase deficiency. Hum Genet. 1986 May;73(1):35–38. doi: 10.1007/BF00292661. [DOI] [PubMed] [Google Scholar]
- Paschke E., Trinkl G., Erwa W., Pavelka M., Mutz I., Roscher A. Infantile type of sialic acid storage disease with sialuria. Clin Genet. 1986 May;29(5):417–424. doi: 10.1111/j.1399-0004.1986.tb00514.x. [DOI] [PubMed] [Google Scholar]
- Radsak K., Schwarzmann G., Wiegandt H. Studies on the cell association of exogenously added sialo-glycolipids. Hoppe Seylers Z Physiol Chem. 1982 Mar;363(3):263–272. doi: 10.1515/bchm2.1982.363.1.263. [DOI] [PubMed] [Google Scholar]
- Renlund M., Chester M. A., Lundblad A., Parkkinen J., Krusius T. Free N-acetylneuraminic acid in tissues in Salla disease and the enzymes involved in its metabolism. Eur J Biochem. 1983 Jan 17;130(1):39–45. doi: 10.1111/j.1432-1033.1983.tb07114.x. [DOI] [PubMed] [Google Scholar]
- Renlund M., Tietze F., Gahl W. A. Defective sialic acid egress from isolated fibroblast lysosomes of patients with Salla disease. Science. 1986 May 9;232(4751):759–762. doi: 10.1126/science.3961501. [DOI] [PubMed] [Google Scholar]
- Rosenblatt D. S., Hosack A., Matiaszuk N. V., Cooper B. A., Laframboise R. Defect in vitamin B12 release from lysosomes: newly described inborn error of vitamin B12 metabolism. Science. 1985 Jun 14;228(4705):1319–1321. doi: 10.1126/science.4001945. [DOI] [PubMed] [Google Scholar]
- SVENNERHOLM L. THE GANGLIOSIDES. J Lipid Res. 1964 Apr;5:145–155. [PubMed] [Google Scholar]
- Schauer R. Characterization of sialic acids. Methods Enzymol. 1978;50:64–89. doi: 10.1016/0076-6879(78)50008-6. [DOI] [PubMed] [Google Scholar]
- Schwarzmann G., Hoffmann-Bleihauer P., Schubert J., Sandhoff K., Marsh D. Incorporation of ganglioside analogues into fibroblast cell membranes. A spin-label study. Biochemistry. 1983 Oct 11;22(21):5041–5048. doi: 10.1021/bi00290a025. [DOI] [PubMed] [Google Scholar]
- Sonderfeld S., Conzelmann E., Schwarzmann G., Burg J., Hinrichs U., Sandhoff K. Incorporation and metabolism of ganglioside GM2 in skin fibroblasts from normal and GM2 gangliosidosis subjects. Eur J Biochem. 1985 Jun 3;149(2):247–255. doi: 10.1111/j.1432-1033.1985.tb08919.x. [DOI] [PubMed] [Google Scholar]
- Sonnino S., Ghidoni R., Fiorilli A., Venerando B., Tettamanti G. Cytosolic gangliosides of rat brain: their fractionation into protein-bound complexes of different ganglioside compositions. J Neurosci Res. 1984;12(2-3):193–204. doi: 10.1002/jnr.490120207. [DOI] [PubMed] [Google Scholar]
- Stevenson R. E., Lubinsky M., Taylor H. A., Wenger D. A., Schroer R. J., Olmstead P. M. Sialic acid storage disease with sialuria: clinical and biochemical features in the severe infantile type. Pediatrics. 1983 Oct;72(4):441–449. [PubMed] [Google Scholar]
- Tettamanti G., Bonali F., Marchesini S., Zambotti V. A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta. 1973 Jan 19;296(1):160–170. doi: 10.1016/0005-2760(73)90055-6. [DOI] [PubMed] [Google Scholar]
- Tondeur M., Libert J., Vamos E., Van Hoof F., Thomas G. H., Strecker G. Infantile form of sialic acid storage disorder: clinical, ultrastructural, and biochemical studies in two siblings. Eur J Pediatr. 1982 Oct;139(2):142–147. doi: 10.1007/BF00441499. [DOI] [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]


